Full metadata record
DC FieldValueLanguage
dc.contributor.author陳岐穎en_US
dc.contributor.authorChen, Qi-Yingen_US
dc.contributor.author周幼珍en_US
dc.date.accessioned2015-11-26T01:05:12Z-
dc.date.available2015-11-26T01:05:12Z-
dc.date.issued2011en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079839528en_US
dc.identifier.urihttp://hdl.handle.net/11536/48103-
dc.description.abstract一般傳統上常討論到使用Markowitz 的均異最適化(mean-variance optimization)的方式進行資產配置。由於Markowitz模型有估計誤差極大化的傾向,可發現報酬率些微改變將造成重大影響,因此我們必須尋找較佳的方法估計報酬率以及變異數,以求得較合理之投資權重。 Black and Litterman 以及其他學者運用不同的資訊,提出相對應的報酬率或變異數的貝氏估計式,以改善Markowitz模型的缺點。本研究在Black and Litterman模型上做了應用,本研究不僅估計報酬率同時也一起估計變異數。在根據這些不同的估計方法,創造出最佳的資產配置,並且比較傳統Markowitz模型、Bootstrap法及各種貝氏估計法所得的投資組合Sharpe ratio。 實證結果在我們的資料上發現在Black and Litterman模型與Shrinkage下,會得到比較高的Sharpe ratio。由於此兩種方法不僅對報酬率的估計上做了修正,也對變異數方面做了估計,可以得到一個風險比較小的投資組合。表示此兩種方法在我們的資料下,風險及報酬的表現優於其他兩種方法。zh_TW
dc.description.abstractThis paper applies some popular asset allocation models, like Black-Litterman model on an index fund. First, an overview is given of the foundations of modern portfolio theory with the mean-variance model. Although the model inspired a rich field of science and was used by many investors, it does have some obvious flaws. Next, we discuss some improvements that could be made over the mean-variance model. Finally, we compare the performance of the bootstrap methodology, Black-Litterman model, Bayesian approach and shrinkage methodology with the Sharpe ratio. The conclusion in our data can be drawn that BL-model improves the mean-variance model and has a better performance than other methods.en_US
dc.language.isoen_USen_US
dc.subjectMarkowitz均異最適化模型zh_TW
dc.subject資產配置zh_TW
dc.subjectBlack-litterman模型zh_TW
dc.subject貝氏估計zh_TW
dc.subjectMean-Variance modelen_US
dc.subjectAsset Allocationen_US
dc.subjectBlack-Litterman modelen_US
dc.subjectBayesian approachen_US
dc.title不同估計方法對資產配置的影響zh_TW
dc.titlePortfolio Allocation with Different Approachesen_US
dc.typeThesisen_US
dc.contributor.department財務金融研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 952801.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.