完整後設資料紀錄
DC 欄位語言
dc.contributor.author王笙權en_US
dc.contributor.authorWang, Sheng-Chuanen_US
dc.contributor.author梁婷en_US
dc.contributor.authorTyne, Liangen_US
dc.date.accessioned2014-12-12T01:51:58Z-
dc.date.available2014-12-12T01:51:58Z-
dc.date.issued2011en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079855513en_US
dc.identifier.urihttp://hdl.handle.net/11536/48248-
dc.description.abstract近體詩是中國文學的精粹之一,以精簡的文字表達豐富的情感與思想。此外詩作也可能包含大量的典故與對仗,因此近體詩對於一般人而言在理解與創作上存在著一定程度的困難。有鑑於此,本論文利用文本分類技術,以進行近體詩處理研究,並建立一個近體詩主題辨識系統。此系統提供詩作相關查詢及詩作處理功能包括斷詞、概念標記、情感辨識、及內容主題辨識等。本研究將主題辨識歸類成詠物述志、山水田園、情愛閨怨、贈別思友、邊塞征戰、社會民生等六項;情感辨識標註為喜愛、怨怒、哀愁等三項。在主題辨識的實驗中我們以992首七言律詩作為實驗語料,萃取詩作的八種詞彙與概念特徵,以支援向量機(SVM)模組進行辨識。經過tenth-fold cross-validation檢驗,主題辨識的平均正確率為69.12%。以同樣的模組,在情感辨識的實驗中我們以492首七言律詩作為實驗語料,得到70.7%的辨識正確率。zh_TW
dc.description.abstractJintishi is one of the Chinese literature classics. Jintishi reveals rich emotion and thoughts in few words. Jintishi may contain allusions and follows syntactic and semantic parallelisms making them difficult to be understood. Therefore, we used text classification techniques to analyze Jintishi and built up a Jintishi topic identification system. The system provides poem search and poem analysis including word segmentation, semantic tagging, topic identification and emotion identification. We classified Jintishi into six topic categories, namely, Chanting Object, Landscape, Desperate Wife, Farewell, Frontier and Social Poem. Additionally, our system supports emotion categorization, namely, happiness, sadness or anger. We used 992 seven-character Lushi in topic identification labeling experiment. We extracted eight lexical and concept Jintishi features and used support vector machine to identify topics for each poem. We get 69.12% accuracy after ten-fold validation. The emotion identification method was performed and tested too. Using 492 seven-character Lushi as test corpus, we get 70.7% accuracy.en_US
dc.language.isozh_TWen_US
dc.subject主題分類zh_TW
dc.subject情感分類zh_TW
dc.subject詞彙語意消解zh_TW
dc.subjectTopic Classificationen_US
dc.subjectSentiment Classificationen_US
dc.subjectWord Sense Disambiguationen_US
dc.title近體詩主題辨識系統研製zh_TW
dc.titleJintishi Processing and Categorizationen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 551301.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。