完整後設資料紀錄
DC 欄位語言
dc.contributor.author方士元en_US
dc.contributor.authorFang, Shih-Yuanen_US
dc.contributor.author李嘉晃en_US
dc.contributor.authorLee, Chia-Hoangen_US
dc.date.accessioned2014-12-12T01:52:17Z-
dc.date.available2014-12-12T01:52:17Z-
dc.date.issued2010en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079855593en_US
dc.identifier.urihttp://hdl.handle.net/11536/48328-
dc.description.abstract本論文中,我們提出了一個Fuzzy AdaBoost.MH 演算法,而且將此Fuzzy AdaBoost.MH 方法運用在文件分類上。Boosting 的主要觀念為利用許多weak hypotheses,透過Boosting 架構得到這些weak hypothesis 權重,最後將這些 weak hypotheses 予以合併,形成一個高準確度的強分類法。我們使用fuzzy rule 作為weak hypothesis,利用decision stump rule 為基礎的方法來當作我們判 別的依據,而每一個fuzzy rule 則是以文件中的term 為依據。在文件特徵表示 法中,每一個n-gram term 常作為文件最基本的特徵;然而每一文件所包含的 n-gram 數目常會是一個巨大的數量,因此在系統的設計中,我們使用term 出現 的頻率來當作term 篩選的方法,並且將通過篩選的term 放入我們的rule pool 中。每一回合,Fuzzy AdaBoost.HM 從rule pool 中挑選出最好的fuzzy rule, 所有fuzzy rule 的集合則是系統分類的依據。 同時,我們提出了一個Fuzzy Number 的表示法,來表示每一條fuzzy rule 的信心度。這些fuzzy rule 的信心度訊息是我們做為推論分類結果的依據。當 訓練的過程結束之後,我們可以經由程度轉化的過程推論我們最後的模糊化分類 結果。本論文中也使用了三種文章集進行實驗,而在實驗的數據中,Fuzzy AdaBoost.MH 皆能有不錯的分類結果。zh_TW
dc.description.abstractIn this paper, we propose a fuzzy AdaBoost.MH algorithm and apply fuzzy AdaBoost.MH to document classification domain. The main idea of boosting is to generate many, relatively weak hypotheses and to combine these weak hypotheses into a single highly accurate classifier. In rule design, we employ decision stump rule as the basic discriminative function and each rule is correspondent to a weak hypothesis. In system design, we employ term frequency as filtering criterion to construct a rule pool. On each round, the best fuzzy rule can be selected from the pool using AdaBoost framework. Meanwhile, we propose a fuzzy number representation to represent each rule’s confidence. These fuzzy rules with confidence information are the bases of classification inference. When the training phase is completed, the final fuzzy classification result can be obtained from the inference result with a degree transformation process. The experimental results show that fuzzy AdaBoost.MH works very well in three data corpora.en_US
dc.language.isozh_TWen_US
dc.subject模糊化zh_TW
dc.subject文件分類法zh_TW
dc.subject群體學習法zh_TW
dc.subjectfuzzyen_US
dc.subjectdocument classificationen_US
dc.subjectadaboosten_US
dc.title基於AdaBoost.MH之模糊化文件分類法zh_TW
dc.titleDocument Classification based on Fuzzy AdaBoost.MHen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 559301.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。