完整後設資料紀錄
DC 欄位語言
dc.contributor.author莊孟魁en_US
dc.contributor.authorChuang, Meng-Kueien_US
dc.contributor.author林寶樹en_US
dc.contributor.author張森嘉en_US
dc.contributor.authorLin, Bao-Shuhen_US
dc.contributor.authorChang, Sen-Chiaen_US
dc.date.accessioned2014-12-12T01:52:55Z-
dc.date.available2014-12-12T01:52:55Z-
dc.date.issued2010en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079857534en_US
dc.identifier.urihttp://hdl.handle.net/11536/48456-
dc.description.abstract近年來,因為其顯著的語音增強(Speech Enhancement)效能,雙麥克風(Dual-Microphone)抗噪技術逐漸受到重視。 本論文發展一種在雙麥克風下,以信心值(Confidence Measure, CM)為基礎,自動快速挑選雙耳時間差(Interaural Time Difference, ITD) 範圍以增進語音辨識正確率之技術。首先驗證最大信心值( Maximum Confidence Measure, MCM)和辨識結果的關係。接著為了提升整體運算效能,利用K-means 分群演算法將語音模型進行分類與簡化,使模型類別數減少。最後以工研院玩具遙控車語音命令語料庫進行測試,在雜訊角度位於30度及60度、訊噪比( Signal-to-Noise Ratio, SNR)為0dB的情況下進行測試,其辨識率可從原本的10%提升至約90%。zh_TW
dc.description.abstractIn recent years, dual-microphone plays an importance role in noise suppression gradually due to the significant speech enhancement performance. In this thesis, we develop a fast and automatic procedure based on confidence measure (CM) to choose a threshold of interaural time difference (ITD) used in dual-microphone robust speech recognition. First of all, we verify the relation between the maximum confidence measure (MCM) and the recognition rate. Secondly, we cluster the speech models by K-means algorithm to reduce the computation load in our system. In a voice command experiment a toy car voice command corpus from Industrial Technology Research Institute database was used to test the performance of our method. When the input signal-to-noise ratio (SNR) is 0 dB with noise located at 30 degrees or 60 degrees, the recognition accuracy was improved from10% to 90% .en_US
dc.language.isozh_TWen_US
dc.subject雙耳時間差zh_TW
dc.subject麥克風陣列zh_TW
dc.subject語音增強zh_TW
dc.subject語音辨識zh_TW
dc.subjectInteraural Time Diffrenceen_US
dc.subjectMicrophone Arrayen_US
dc.subjectSpecch Enhancementen_US
dc.subjectSpeech Recognitionen_US
dc.title以信心值量測為基礎之麥克風陣列強健性語音辨識技術zh_TW
dc.titleConfidence Measure Based Dual-Microphone Robust Speech Recognitionen_US
dc.typeThesisen_US
dc.contributor.department多媒體工程研究所zh_TW
顯示於類別:畢業論文