完整後設資料紀錄
DC 欄位語言
dc.contributor.author吳瑞榮en_US
dc.contributor.author劉敦仁en_US
dc.contributor.authorLiu, Duen-Renen_US
dc.date.accessioned2014-12-12T01:53:27Z-
dc.date.available2014-12-12T01:53:27Z-
dc.date.issued2010en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079864522en_US
dc.identifier.urihttp://hdl.handle.net/11536/48631-
dc.description.abstract高科技業市場變化快速,競爭壓力日益龐大,根據以往消費模式找出客戶可能的需求,並且快速反應客戶要求日益重要。 本研究以類比IC設計產業為例,應用資料探勘的技術協助銷售策略,透過客戶的RFM分數使用K-means進行分群,再使用關聯規則針對每個群集從歷史的銷售資料中找出客戶的購買模式,並且對客戶進行相關產品的推薦。本研究使用不同的分群方法進行推薦品質的比較,實驗結果證明使用本研究提出的方法,可有效提升客戶銷售價值與客戶忠誠度。zh_TW
dc.description.abstractAs the high tech market change quickly, companies are increasingly facing competitive pressures. Thus, it is important to find out the potential demands by past consumer sales data and react more promptly to satisfy customer demands. In this research, we apply data mining techniques to support sales strategies of analog IC design industry. We use K-means to cluster customers into different clusters based on customers’ RFM values. Then association rule mining is applied to discover buying association patterns from the sales data in each cluster. Based on the association patterns, recommendations are conducted to recommend products to customers. This thesis has compared different recommendation methods under different clustering effects. The experimental result shows that the proposed approach is promising to promote customer loyalty and sales.en_US
dc.language.isozh_TWen_US
dc.subject資料探勘zh_TW
dc.subjectApriorizh_TW
dc.subjectIC設計zh_TW
dc.subject客戶分群zh_TW
dc.subjectRFMzh_TW
dc.subjectK-meanszh_TW
dc.subjectData miningen_US
dc.subjectApriorien_US
dc.subjectIC Design Houseen_US
dc.subjectCustomer Segmentationen_US
dc.subjectRFMen_US
dc.subjectK-meansen_US
dc.title應用資料探勘於IC 設計產業協助銷售策略-以X 公司為例zh_TW
dc.titleApplying Data Mining Techniques to Support Sales Strategies of IC Design Industry - A Case of X Companyen_US
dc.typeThesisen_US
dc.contributor.department管理學院資訊管理學程zh_TW
顯示於類別:畢業論文