Full metadata record
DC FieldValueLanguage
dc.contributor.author黃偉彥en_US
dc.contributor.authorHuang,Wei-Yenen_US
dc.contributor.author楊界雄en_US
dc.contributor.authorYang,Kei-Hsiungen_US
dc.date.accessioned2015-11-26T01:04:39Z-
dc.date.available2015-11-26T01:04:39Z-
dc.date.issued2012en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079905523en_US
dc.identifier.urihttp://hdl.handle.net/11536/49024-
dc.description.abstract姿勢辨識是電腦智慧中最重要的一環,能夠使電腦對於人類的動作姿勢進行判讀,幫助人類與機器之間的互動,現今辨識領域有許多的辨識演算法,但大多數皆過於複雜和費時,所以本論文的研究方向是利用動態時間扭曲演算法(Dynamic Time Warping ,DTW)的實現,來建構一個高準確性的姿勢辨識系統。 本論文主要研究為利用雷射光斑成像裝置Kinect當作偵測器,追蹤人體骨架以及紀錄人體關節座標,將輸入資訊與先前紀錄起來之關節座標的參考資訊比對,藉由DTW演算法的比對,能夠計算兩組資訊之間的相似度,並由高相似度的判讀達成高準確性辨識,以實現利用雷射光斑成像裝置建構姿勢辨識系統。zh_TW
dc.description.abstractGesture recognition is one of the most promising fields in computer science, and touch-input technology. It’s applications to sport gaming on a TV set such as Microsoft Kinect is well known. It also facilitates the interactions between computer and human beings. Most of algorithms for gesture recognition are too complicated and time-consuming. In this thesis, we use dynamic time warping algorithm to compute data that are less time-consuming and better accuracy. We use Kinect, a tool for laser-speckle imagery, containing a light source and a detector to obtain data for tracking skeleton and joint. Comparing these data with the reference data by DTW algorithm, we can figure out the similarity and the difference between two groups of data. Hence, our methods of gesture recognition are faster and better accuracy.en_US
dc.language.isozh_TWen_US
dc.subject光斑zh_TW
dc.subject姿勢辨識zh_TW
dc.subject動態扭曲演算法zh_TW
dc.subjectspeckleen_US
dc.subjectKinecten_US
dc.subjectgesture recognitionen_US
dc.subjectDTWen_US
dc.title利用雷射光斑成像裝置建構姿勢辨識系統zh_TW
dc.titleA New Gesture Recognition System Based on Laser-Speckle Imageryen_US
dc.typeThesisen_US
dc.contributor.department照明與能源光電研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 552301.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.