完整后设资料纪录
DC 栏位语言
dc.contributor.author陈柏翔en_US
dc.contributor.authorChen, Po-Hsiangen_US
dc.contributor.author王圣智en_US
dc.contributor.authorWang, Sheng-Jyhen_US
dc.date.accessioned2014-12-12T01:55:20Z-
dc.date.available2014-12-12T01:55:20Z-
dc.date.issued2012en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079911615en_US
dc.identifier.urihttp://hdl.handle.net/11536/49152-
dc.description.abstract在本篇论文中,我们提出了一个仅利用一对可见光摄影机、且适用于大型触控面版之手势识别技术。该系统主要是由一个悬挂式投影机和一对安装在面板顶部边角的可见光摄影机组成。在大多数现有的相关系统中,为了降低侦测物体的难度,皆必须在触控版周边安装特殊边条以排除可能的复杂背景。有别于这些系统,我们的大型触控面版不需要安装这些特殊边条。然而,在这样的条件下,如何在杂乱的背景中精确地找出触控点位置,以及如何辨识使用者的手势,是我们本篇论文主要讨论的议题。在我们的演算法里,我们利用边界侦测从单一的灰阶影像中提取资讯并作整理。接着,我们使用随机决策森林来训练手的各个部位以便处理大小以及角度上的变化。次之,我们使用逐层淘汰的方式,加速我们的演算法速度。最后,将两个摄影机侦测到的手指位置投影回三维座标后,我们即可推测使用者的触控点位置以及使用者的手势意义。zh_TW
dc.description.abstractIn this thesis, we present a novel hand posture recognition technique for a large-scale touch panel using only a pair of visible-light cameras. The system is composed mainly of an overhead image projector and a pair of cameras installed on the top corners of the panel for practicability. Due to the difficulty of object detection in cluttered images, most existing systems in related works have tried to avoid the influence of dynamic backgrounds by adding boarder bars beside the panel. Unlike these works, we remove the setup of boarder bars and use visible-light cameras to detect objects. How to determine precisely the positions of the touch points in cluttered backgrounds and how to recognize human hand postures are the main topics of the system. In our approach, we use edge detectors to extract information from a single gray-scale image in dynamic background under illumination variations. Furthermore, the random forest method is used to train different hand parts in order to conquer orientation and scale variations. After that, we use an adaboost-like rejection process to speed up detection speed. Finally, by projecting the detected hand posture from both cameras onto the 3D space, we can decide where the user is touching and what gesture the user is indicating.en_US
dc.language.isozh_TWen_US
dc.subject手势辨识zh_TW
dc.subjectGesture recognitionen_US
dc.title适用于大型触控面板之手势辨识技术zh_TW
dc.titleHand Posture Recognition Technique for Large-scale Touch Panelen_US
dc.typeThesisen_US
dc.contributor.department电子研究所zh_TW
显示于类别:Thesis