標題: 不受表情影響的人臉配對特徵點抓取方法研究
A Study on Expression Invariant Feature Points for Human Faces Matching
作者: 曾茂清
Tseng, Moa-Ching
林松山
Lin, Song-Sun
應用數學系數學建模與科學計算碩士班
關鍵字: 特徵點;Feature points
公開日期: 2011
摘要: 本論文我們在一開始介紹了許多局部形狀特徵描述子,我們根據許多文獻整理出了常見的一些描述子的概念、特性和缺點。接下來我們針對臉部的正面掃描介紹許多基於不同描述子而衍生出的演算法和方法,之後我們討論了由不同姿態與表情變化所衍生出來的問題。我們對於正面與不同姿態的臉部影像整理出了一些結論並對於受表情影響很大的嘴唇特徵點的提取提出一些想法,希望可以在未來加以實現。
In this study, we give an overview of some common local shape feature descriptors. Their concepts, properties and shortcomings are organized according to lots of literature. We then provide a discussion of facial feature extraction methods. Based on different local feature descriptors, we enumerate the corresponding methods and algorithms for the frontal facial scan. Then we discuss the problems caused by changing pose and expression variation respectively in detail and propose some ideals to address the problems. We conclude with a summary and promising future research directions for solving the problem of mouth feature points extraction.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079920507
http://hdl.handle.net/11536/49696
Appears in Collections:Thesis


Files in This Item:

  1. 050701.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.