完整后设资料纪录
DC 栏位语言
dc.contributor.author杨建南en_US
dc.contributor.authorYang, Chien-Nanen_US
dc.contributor.author林妙聪en_US
dc.contributor.authorLin, Bertrand M.T.en_US
dc.date.accessioned2014-12-12T01:58:27Z-
dc.date.available2014-12-12T01:58:27Z-
dc.date.issued2011en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079934526en_US
dc.identifier.urihttp://hdl.handle.net/11536/50151-
dc.description.abstract在过去十年内,云端运算已经获得越来越多的关注。云端运算的架构可以被
视为是许多散布在网际网路上的非等效平行机台。在本研究中,我们将探讨非等
效平行机台排程以及资源获取成本安排的问题。云端服务经纪人接受客户委托之
计算工作,并向云端服务供应商购买运算资源以处理这些工作。我们的模型中,
不同的平行机台根据速度以及供应商的策略而被包装成为许多套装方案。而为了
提供更弹性化的购买选择,这些组合依照一个新的机制来定价。为了将总成本(包含总加权延迟时间以及资源获取成本)最小化,经纪人所要做的决定是选择所需的套装方案,并在其中的机台上安排工作。在本研究中,我们使用整数规划模式描述此问题,并且提出许多演算法将总成本最小化。我们将十种文献中对于平行机台排程问题所提出的启发式演算法修改以适应此模型,并以此作为初始解,再将这些初始解用新的neighborhood structures所修改过的禁忌搜寻法和基因演算法做更进一步的改善。对于上述所提出的各种方法,我们以一系列的电脑模拟实验来验证各种演算法的效能,效率等表现。根据实验结果,我们所使用的禁忌搜寻法以及基因演算法可以在短时间内获得明显的改善。并且禁忌搜寻法可在短时间内取得良好的近似解。
zh_TW
dc.description.abstractCloud computing has been attracting considerable attention since the last decade. This study considers a decision problem formulated from the use of computing ser-vices over the Internet. An agent receives orders of computing tasks from clients and on the other hand acquires computing resources from computing service providers to fulfill the requirements of the clients. The processors are bundled as packages
according to their speeds and the business strategies of the providers. The packages are rated at a certain pricing scheme to provide flexible purchasing options to the agent. The decision of the agent is to select the packages to acquire from the service providers and then schedule the tasks of the client onto the processors of the ac-quired packages such that the total cost, including acquisition cost and scheduling cost (weighted total tardiness), is minimum. In this study, we present an integer programming model to formulate the problem and propose several solution methods to minimize the total cost. Ten well-known heuristics of parallel-machine scheduling are adapted to fit into the studied problem so as to provide initial solutions. Tabu search (TS) and genetic algorithm (GA) are tailored to reflect the problem’s nature to improve upon the initial solutions. We conduct a series of computational exper-iment to evaluate the effectiveness and efficiency of all of the proposed algorithms. The results of the numerical experiments reveal that the proposed TS and GA can attain significant improvements. Moreover, TS outperforms GA in achieving im-pressive solution quality in a short time period.
en_US
dc.language.isoen_USen_US
dc.subject平行机台工作排程zh_TW
dc.subject云端运算zh_TW
dc.subject启发式演算法zh_TW
dc.subject禁忌搜寻法zh_TW
dc.subject基因演算法zh_TW
dc.subjectParallel-machine schedulingen_US
dc.subjectcloud computingen_US
dc.subjectheuristicen_US
dc.subjecttabu searchen_US
dc.subjectgenetic algorithmen_US
dc.title平行机台工作排程及运算资源获取之规划zh_TW
dc.titleob Scheduling on Parallel Machines and Acquisition Planning of Computing Resourcesen_US
dc.typeThesisen_US
dc.contributor.department资讯管理研究所zh_TW
显示于类别:Thesis