標題: | 個人化基因體整合分析系統之建置 Establishing an integrated analysis system for personal genomes |
作者: | 蘇晟漢 Su, Cheng-Han 黃憲達 Huang, Hsien-Da 生物資訊及系統生物研究所 |
關鍵字: | 個人化基因體;次世代定序;personal genomes;next-generation sequecing |
公開日期: | 2011 |
摘要: | 隨著技術的進步,DNA定序的成本大幅降低,在不久的將來,1000美金就能定出一個人的序列,進一步的個人化醫療能改善人類的健康和降低醫療成本。
解讀個人化基因體能了解從一位健康的個體或是一位病患的序列中能獲的多少資訊。定序一位健康且本身沒有特定的疾病的個體,可以從其序列資訊分析出可能為隱性遺傳疾病的帶原者;定序一位病患可以針對特定基因對疾病的變異分析是否在此基因上有發生突變。
為了解讀次世代定序所產生的大量資料,目前有許多的計算工具被開發出來,例如,短序列和參考基因體的比對、單核甘酸多態性的偵測、結構變異或是複製數變異的偵測。
快速、完整、且準確的解讀人類基因體並做儲存以便之後個人化醫療,例如,臨床診斷、藥物劑量、疾病勝算比的預測等,是目前個人化定序很重要的課題。
我們運用雲端技術建立了一套個人化基因體整合分析系統。我們提供遺傳變異的檢測報告,包括準確紀錄人類個體之間0.1%的遺傳變異像是單點核甘酸多態性、短片段的插入與缺失、複製數變異和短片斷重複複製等。我們也提供雲端存取與分析服務,包括標靶序列的擷取與註解、基因型對疾病的勝算比、孟德爾遺傳疾病和罕見疾病突變點的偵測。 Advanced DNA sequencing technology improves the quantity and quality, and dramatically declines the cost. It is expected to reach US$1000 for complete human genome sequencing over the next few years. The dramatically declining cost can make everyone keep their personal genome that will improve the human health and reduces the health costs. Reading the personal genomes can understand what information can be extracted from sequencing a healthy individual or a patient. One case for sequencing healthy individuals with no specific disease can read the information about carrier status to know if a recessive Mendelian disorders carrier. Another case for sequencing patients can read the analysis on variants with known disease mutations. Fast、completely and accurately interpret human genome and store in the cloud is a very important challenge for further personalized medicine, such as clinical diagnosis、dosage of medicine and the disease odds ratio prediction and so on. We establish an integrated system for personal genomes by using parallel computing. We provide variants reporting, including accurately record 0.1% genetic variants between human such as single-nucleotide polymorphisms (SNPs)、short insertions and deletions (INDELs)、copy number variants (CNVs) and short tandem repeat (STR). We also provide web service, including target region retrieval and annotation、disease odds ratio prediction、Mendelian disorders and rare diseases mutation detection. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079951508 http://hdl.handle.net/11536/50390 |
Appears in Collections: | Thesis |