完整後設資料紀錄
DC 欄位語言
dc.contributor.author李國寧en_US
dc.contributor.author陳永富en_US
dc.contributor.authorChen, Yung-Fuen_US
dc.date.accessioned2014-12-12T02:00:35Z-
dc.date.available2014-12-12T02:00:35Z-
dc.date.issued2011en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079973511en_US
dc.identifier.urihttp://hdl.handle.net/11536/50873-
dc.description.abstract在本篇論文,利用mathcad軟體,呈現出近代許多人想要研究的新興物理相關議題,包含碎形的圖形介紹、繪製與不同的生成方法,除了碎形議題之外,波的生成與波和波之間所產生的干涉圖案也是引發許多人想要研究的部分。另外,近年來彈簧擺的擺動軌跡圖案與擺動軌跡渾沌現象的討論也是相當重要的概念,經由基本的物理概念,給予不同的初始條件,表現出不同的擺動軌跡圖案,讓人可以不用經過實驗,即可以利用電腦畫出軌跡;此外繩結的紐結理論,也是一個有趣的議題,利用數學的方程式,模擬用繩結的交錯產生許多不同的圖案。這些議題的背後都有相關的數學方程式,我們可以透過數學軟體的運算,並呈現圖形之生成與變化,可以提供給未來相關的研究參考。zh_TW
dc.description.abstractThe purpose of this thesis is to study recently brand new physics topic with mathematical software. First of all, we introduce “fractal geometry” by representing the figures and discussing various generating methods. Also, we focus on the patterns of wave interference, in which we simulate the quasicrystal pattern. Secondly, we analyze spring pendulum without experiments and show the swing trajectories varied with initial conditions by the mathcad software only. Finally, we study the knot theory. We can generate many different and interesting knots with mathematical formulas. All the topics can be visualized with formulas and mathematical software.en_US
dc.language.isozh_TWen_US
dc.subjectMathcadzh_TW
dc.subject碎形zh_TW
dc.subject準晶格zh_TW
dc.subject彈簧擺zh_TW
dc.subject紐結理論zh_TW
dc.subjectMathcaden_US
dc.subjectfractalsen_US
dc.subjectquasi-latticeen_US
dc.subjectspring pendulumen_US
dc.subjectknot theoryen_US
dc.title科學計算與視覺化zh_TW
dc.titleScientific Calculation and Visualizationen_US
dc.typeThesisen_US
dc.contributor.department理學院科技與數位學習學程zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 351101.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。