Full metadata record
DC FieldValueLanguage
dc.contributor.authorFerguson, Alexen_US
dc.contributor.authorSmith, Matthew R.en_US
dc.contributor.authorWu, J. -S.en_US
dc.date.accessioned2014-12-08T15:06:35Z-
dc.date.available2014-12-08T15:06:35Z-
dc.date.issued2010-07-01en_US
dc.identifier.issn1526-1492en_US
dc.identifier.urihttp://hdl.handle.net/11536/5158-
dc.description.abstractA novel approach for the use of multiple continuous uniform distributions for reconstruction of the Maxwell-Boltzmann equilibrium probability distribution function is used for the solution of one and two dimensional Euler equations. The Uniform distribution Equilibrium Flux Method (UEFM) is a kinetic-theory based flux solver which calculates true directional, volume to volume fluxes based on integration (over velocity space and physical space) of a sum of uniform probability distribution functions working to approximate the equilibrium distribution function. The resulting flux expressions contain only the Heaviside unit step function and do not require the evaluation of the Exponential or Error Functions. The proposed method is verified using a series of one and two dimensional benchmarks and is shown to provide a higher level of accuracy (for a given computational expense) when compared to the similar Quiet Direct Simulation (QDS) method.en_US
dc.language.isoen_USen_US
dc.subjectKinetic Theory of Gasesen_US
dc.subjectEuler Equationsen_US
dc.subjectComputational Fluid Dynamicsen_US
dc.subjectCFDen_US
dc.titleAccurate True Direction Solutions to the Euler Equations Using a Uniform Distribution Equilibrium Methoden_US
dc.typeArticleen_US
dc.identifier.journalCMES-COMPUTER MODELING IN ENGINEERING & SCIENCESen_US
dc.citation.volume63en_US
dc.citation.issue1en_US
dc.citation.spage79en_US
dc.citation.epage100en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000281940100004-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000281940100004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.