Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 李庚 | en_US |
dc.contributor.author | LI, GENG | en_US |
dc.contributor.author | 許世壁 | en_US |
dc.contributor.author | Xu, Shi-Bi | en_US |
dc.date.accessioned | 2014-12-12T02:04:04Z | - |
dc.date.available | 2014-12-12T02:04:04Z | - |
dc.date.issued | 1985 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT744507002 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/52709 | - |
dc.description.abstract | 本文主要在探討型矩陣的線性最小平方問題(Linear Least Squares Problem) 。我 們以垂直式(Normal Equation) 及QR 演算法則來解決一個〞滿秩〞(Full Rank) 的 矩陣。而對於非滿秩的情形則用奇異值分解法(Singular Value Decomposition) 來 解決它。 特別值得一堤的是有關奇異值的求法。我們主要的依據是在大型矩陣中常被廣泛應用 的Lanczos 遞迴式。利用Lanczos 遞迴式的推廣,我們得到了一個奇異值演算法則, 這使得大型矩陣的線性最小平方問題得以更容易解決。 | zh_TW |
dc.language.iso | zh_TW | en_US |
dc.subject | 大型距陣 | zh_TW |
dc.subject | 距陣 | zh_TW |
dc.subject | 線性最小平方問題 | zh_TW |
dc.subject | 垂直式 | zh_TW |
dc.subject | QR演算法 | zh_TW |
dc.subject | 滿秩 | zh_TW |
dc.subject | 奇異值 | zh_TW |
dc.subject | 奇異值演算法 | zh_TW |
dc.subject | 應用數學 | zh_TW |
dc.subject | 數學 | zh_TW |
dc.subject | LINEAR-LEAST-SQUARES-PROBLEM | en_US |
dc.subject | NORMAL-EQUATION | en_US |
dc.subject | FULL-RANK | en_US |
dc.subject | APPLIED-MATHEMATICS | en_US |
dc.subject | MATHEMATICS | en_US |
dc.title | 大型矩陣的線性最小平方問題 | zh_TW |
dc.title | Linear least squares problem for sparse matrix | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
Appears in Collections: | Thesis |