Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, KMen_US
dc.contributor.authorWang, SWen_US
dc.contributor.authorLi, CHen_US
dc.contributor.authorYeh, THen_US
dc.contributor.authorYang, JYen_US
dc.date.accessioned2014-12-08T15:01:46Z-
dc.date.available2014-12-08T15:01:46Z-
dc.date.issued1997-05-12en_US
dc.identifier.issn0003-6951en_US
dc.identifier.urihttp://hdl.handle.net/11536/544-
dc.description.abstractFor a low dielectric constant intermetal dielectric application, fluorinated silicon oxide (FxSiOy) films were deposited in an electron cyclotron resonance chemical vapor deposition system, with SiH4, O-2, and CF4 as the reaction gases. Since the CF4 is an indirect fluorinating precursor, the fluorinating mechanism resembles that of the oxide etching by a fluorocarbon plasma. Thermal stability of the incorporated fluorine (and hence, the dielectric constant) relies heavily on the deposition parameters and technologies. According to experimental results, adding Ar gas during deposition can improve the thermal stability of incorporated fluorine. Such an improvement is due to the fact that Ar sputtering enhances the removal of weakly bonded silicon fluoride on the as-deposited film surface, thereby elevating the mean bonding strength of fluoride remaining in the oxide. (C) 1997 American Institute of Physics.en_US
dc.language.isoen_USen_US
dc.titleEffect of adding Ar on the thermal stability of chemical vapor deposited fluorinated silicon oxide using an indirect fluorinating precursoren_US
dc.typeArticleen_US
dc.identifier.journalAPPLIED PHYSICS LETTERSen_US
dc.citation.volume70en_US
dc.citation.issue19en_US
dc.citation.spage2556en_US
dc.citation.epage2558en_US
dc.contributor.department奈米中心zh_TW
dc.contributor.departmentNano Facility Centeren_US
dc.identifier.wosnumberWOS:A1997WY23400022-
dc.citation.woscount4-
Appears in Collections:Articles


Files in This Item:

  1. A1997WY23400022.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.