Full metadata record
DC FieldValueLanguage
dc.contributor.authorShih, Wen-Chungen_US
dc.contributor.authorYang, Chao-Tungen_US
dc.contributor.authorTseng, Shian-Shyongen_US
dc.date.accessioned2014-12-08T15:07:01Z-
dc.date.available2014-12-08T15:07:01Z-
dc.date.issued2010-05-01en_US
dc.identifier.issn0920-8542en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11227-009-0286-5en_US
dc.identifier.urihttp://hdl.handle.net/11536/5493-
dc.description.abstractEffective data distribution techniques can significantly reduce the total execution time of a program on grid computing environments, especially for data mining applications. In this paper, we describe a linear programming formulation for the data distribution problem on grids. Furthermore, a heuristic method, named Heuristic Data Distribution Scheme (HDDS), is proposed to solve this problem. We implement two types of data mining applications, Association Rule Mining and Decision Tree Construction, and conduct experiments on grid testbeds. Experimental results show that data mining programs using the proposed HDDS to distribute data could execute more efficiently than traditional schemes could.en_US
dc.language.isoen_USen_US
dc.subjectHeuristic data distribution schemeen_US
dc.subjectData miningen_US
dc.subjectGrid computingen_US
dc.subjectMPIen_US
dc.titlePerformance-based data distribution for data mining applications on grid computing environmentsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11227-009-0286-5en_US
dc.identifier.journalJOURNAL OF SUPERCOMPUTINGen_US
dc.citation.volume52en_US
dc.citation.issue2en_US
dc.citation.spage171en_US
dc.citation.epage198en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000276498300005-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000276498300005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.