完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Cheng-Hungen_US
dc.contributor.authorLin, Cheng-Jianen_US
dc.contributor.authorLee, Chi-Yungen_US
dc.date.accessioned2014-12-08T15:07:03Z-
dc.date.available2014-12-08T15:07:03Z-
dc.date.issued2007en_US
dc.identifier.isbn978-3-540-73322-5en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11536/5534-
dc.description.abstractThis paper proposes a recurrent wavelet-based neuro-fuzzy system (RWNFS) with the reinforcement hybrid evolutionary learning algorithm (R-HELA) for solving various control problems. The proposed R-HELA combines the compact genetic algorithm (CGA) and the modified variable-length genetic algorithm (MVGA), performs the structure/parameter learning for dynamically constructing the RWNFS. That, is, both the number of rules and the adjustment of parameters in the RWNFS are designed concurrently by the R-HELA. In the R-HELA, individuals of the same length constitute the same group. There are multiple groups in a population. The evolution of a population consists of three major operations: group reproduction using the compact genetic algorithm, variable two-part crossover, and variable two-part mutation. An illustrative example was conducted to show the performance and applicability of the proposed R-HELA method.en_US
dc.language.isoen_USen_US
dc.titleEfficient reinforcement hybrid evolutionary learning for recurrent wavelet-based neuro-fuzzy systemsen_US
dc.typeArticleen_US
dc.identifier.journalNew Trends in Applied Artificial Intelligence, Proceedingsen_US
dc.citation.volume4570en_US
dc.citation.spage207en_US
dc.citation.epage216en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000248621400021-
顯示於類別:會議論文