标题: 利用扫瞄穿隧显微镜观测双原子分子在表面上的反应
Scanning Tunneling Microscopy Studies of Surface Reactions of Diatomic Molecules
作者: 冯世鑫
Shyh-Shin Ferng
江进福
林登松
Tsin-Fu Jiang
Deng-Sung Lin
物理研究所
关键字: 矽(100);扫瞄穿隧显微镜;双原子分子;吸附;Si(100);Scanning Tunneling microscopy;Diatomic Molecules;Adsorption
公开日期: 2008
摘要: 本论文主要是利用扫瞄穿隧显微镜(STM)观察分子在表面上的作用与反应,其中的课题包括分子结合脱附、表面结构相变化、分子吸附、热原子动力学以及基底大小对量子点成长的影响。本论文各章节大概编排如下:第一章简介分子在表面上的吸附以及脱附动力学。第二章描述实验上的仪器架构、STM操作原理、样品制备方式以及探针脱附的技巧。而第三章到第五章是展现实验结果以及讨论。第六章为实验结果的结论以及进一步的讨论。
在探讨表面结构相变化的部分,氢原子在Si(100)表面上可使表层矽原子键结一个氢原子(monohydride)或者键结两个氢原子(dihydride),而这两种结构的组合可让Si(100)表面上形成三种稳定的相位:(1×1)、(3×1)以及(2×1)相位,氢原子的覆盖率分别为2、1.33以及1个表层矽原子密度。本实验探讨(1×1)和(3×1)相位是如何相变到(2×1)相位,以及氢原子由表面热脱附的动力学机制,做法是加热拥有(1×1)和(3×1)相位的样品,使表面上的结构相变至(2×1)相位,再利用扫瞄穿隧显微镜观察表面上的变化。结果显示氢分子由dihydride区域脱附时(由1×1区域脱附),两个氢原子来自于相邻两个dihydride内侧的氢原子。这种脱附方式在(3×1)区域进行前,必须先有dihydride与monohydride位置交换的动作,才能产生相邻的dihydride。而氢分子由monohydride区域脱附是在样品温度较高时,两个氢原子来自于同一个dimer上的氢原子。
在研究分子吸附动力学部分,首先讨论碘分子在干净Si(100)表面上的吸附动力学。碘分子覆盖率较低时,结果显示两个碘原子吸附在相邻同排dimer row同侧上的活性键的机率最高。当碘的吸附量增加后,最高的覆盖率只能达到0.92个表层矽原子密度。为了进一步探讨碘分子以及氯分子的吸附动力学,我们在覆盖了氢原子的Si(100)表面上制备出拥有孤立活性键的表面,这些活性键可以是单一的、成对的、成串的或是长炼状的。当碘分子和氯分子与这些活性键作用后,我们观察到两种分子是以不同的动力学做吸附。对于碘分子的吸附,两的碘原子的吸附必须同时产生,分子键才会断裂。所以表面上必须存在两个且邻近的活性键,碘分子才会裂解吸附。对于氯分子而言,两个氯原子的吸附是可以单独进行,所以表面上只需要存在单一个活性键,即可使吸附反应发生。反应过程往往是一个氯原子先与活性键键结,而另一个氯原子可以离开表面,也可以与周遭的原子产生新的反应。
本论文利用真实空间以及原子解析度的影像来探讨表面化学反应,其中的利用孤立活性键来探讨分子吸附动力学更是第一次提出,这样的表面结构提供一个很好的介面来研究气体与固体反应动力学。
The objective of this thesis focuses on the fundamental issues in surface reactions by using scanning tunneling microscopy (STM). The scientific issues include recombinative desorption, structure phase transition, dissociative adsorption, abstractive adsorption, hot atom motion, and size-dependent quantum-dot growth. The thesis is organized as following: Chapter 1 introduces the common mechanisms of molecules adsorption and desorption on the surface. Chapter 2 describes the experimental setup employed during this research. The STM operating principles, sample preparation procedures, and STM lithography techniques are also explained. The detailed results and discussions of each issue are presented in Chapter 3, 4, and 5. Finally, Chapter 6 summarizes the results and further discussions.
For the discussion of structure phase transition on the Si(100) surface, monohydrides dimers (SiH) and dihydride (SiH2) species can form an ordered mixture with (3 × 1), (1 × 1), and (2 × 1) phases. Thermal annealing at 570 K causes both the (3 × 1) and (1 × 1) domains to transform to the (2 × 1) phases. During the hydrogen reduction from 1.33 ML to 1 ML, the recombinative desorption of H2 from dihydride and monohydride species are investigated. Desorption from dihydrides proceeds by recombination of two H atoms coming separately from two adjacent dihydrides. This process is geometrically forbidden for the (3 × 1) surface, but becomes possible with a switch of a dihydride with a neighboring monohydride dimer. Desorption from monohydrides occurs at a higher temperature, and proceeds by recombination of the two H atoms on a given monohydride dimer.
In the discussions of molecule adsorption mechanisms, I2 on a prototypical semiconductor surface is observed. Adsorption of I2 on the same side of neighboring dimer is favored than on one dimer with the ratio1 at low coverage. After further I2 exposure, the maximum iodine coverage is 0.92 ML. To distinguish the adsorption geometry for I2, single dangling bond pairs that are fabricated on H/Si(100) surface are used for I2 adsorption. Different adsorption mechanisms of I2 and Cl2 are demonstrated with I2 and Cl2 reaction to dangling bonds in isolation or organized in pairs, clusters, or arrays. Iodine chemisorption is predominantly a pair process involving the bonding of the two I atoms in a I2 molecule onto two neighboring dangling bonds. In sharp contrast, adsorption of Cl2 is dominated by the bonding of just one Cl atom in a Cl2 molecule, with the other Cl atom either leaving the surface or migrating to a nearby area to cause further reactions.
This thesis gives the real-space images and detailed atomic processes by in situ studies. The adsorption mechanisms of molecules on various initial active site configurations are first reported. This approach points to opportunities for systematic investigations of the atomistics of gas-surface reactions.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009127504
http://hdl.handle.net/11536/55669
显示于类别:Thesis


文件中的档案:

  1. 750401.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.