Full metadata record
DC FieldValueLanguage
dc.contributor.author李建智en_US
dc.contributor.authorChieh-Chih Lien_US
dc.contributor.author陳紹基en_US
dc.contributor.authorSau-Gee Chenen_US
dc.date.accessioned2014-12-12T02:10:45Z-
dc.date.available2014-12-12T02:10:45Z-
dc.date.issued1992en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT810430103en_US
dc.identifier.urihttp://hdl.handle.net/11536/56970-
dc.description.abstract在本文中,我們提出以二為基底之快速除法及開根號演算法。此演算法在 面積及速度之表現皆比現存之演算法及架構為佳。其循序架構基上包含N 個簡單的CSA(Carry save adders),而平行架構則包含N*N個CSA 。此架構能在5N個CSA時間內完成N位元除法及開根號運算,而且所 得之輸出以二進制位元數表示。再則,我們將除法及開根號運算結合一最 大位元先輸出之乘法演算法,而得最佳化之統一演算法。如此三種算術運 算可以建構成單一的算術單元,因此硬體的複雜度可以減少。由於硬體是 由具規則性電路構成,因此非常適合於VLSI製作。此外,亦根據所提 出之演算法,以Magic電腦輔助設計軟體製作一24位元除法器。 In this thesis, a fast radix-2 division and square-root algorithm are proposed. It achieves the best performance in both area and speed aspects over the existing algorithms and implementations. The proposed architecture basically consists of N simple carry-save adders ( CSAs ) for bit-serial implementation, and N*N CSAs for bit parallel implementation. It finished an N-bit division and square-root in 5N(O(N)) carry -save addition time and the result bits are in binary representation. In addition, a most-significant-digit(MSD) first multiplication is combined with the division and square- root algorithms for an optimal unified algorithm. Hence, the three operations can be constructed in a compatible arithmetic unit, which results in fast multi-function capability with least area. Since the hardware composed of highly regular cellular array, which is suitable for VLSI implementation, and the hardware implementation of 24-bit divider using "Magic" CAD tool is also presented.zh_TW
dc.language.isoen_USen_US
dc.subject演算法,最大位元先輸出乘法 符號位元運算,捨入及轉換zh_TW
dc.subjectalgorithm;MSB-first multiplication;signed-Digit operation; rounding and conversionen_US
dc.title最佳化之算術演算法及其架構設計zh_TW
dc.titleOptimized Arithmetic Algorithm and Architecture Designen_US
dc.typeThesisen_US
dc.contributor.department電子研究所zh_TW
Appears in Collections:Thesis