Full metadata record
DC FieldValueLanguage
dc.contributor.author孫世浩en_US
dc.contributor.authorShr-Hau Sunen_US
dc.contributor.author吳文榕en_US
dc.contributor.authorWen-Rong Wuen_US
dc.date.accessioned2014-12-12T02:10:49Z-
dc.date.available2014-12-12T02:10:49Z-
dc.date.issued1992en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT810436030en_US
dc.identifier.urihttp://hdl.handle.net/11536/57014-
dc.description.abstract在這篇論文中,對於傳統AR模式我們提出了一個新的藉由次頻技術的方
法。經由這種方法可得到更有效率的實現及更好的性能。我們並將其應
用 ,濾波及形狀辨識。前兩種應用我們提出了在次頻模式 新方法,並且
為了實現簡單,又提出了零階趨近法。所 膆雃劃堣隤k的優越性。而形狀
辨識方面,用次頻AR為特徵也同樣地增進了辨識率。
In this thesis we propose an new method for the tranditional AR
modeling problem via subband technique. By means of this method
more efficient realization and better performance will then
achieve. Three alppications including prediction, and shape
recognition are explored. Unlike trainditional implementation
of predicton and filtering, the algorithm we proposed is
modeled in subband but realized in full band. For ease to
implementation a zero-order method is proposed. All the
simulation results indicate the preponderance of our algorithm.
Pattern recognition that employ subband AR feature also enhance
the correct ratio of classification.
zh_TW
dc.language.isoen_USen_US
dc.subject次頻;預測;濾波;形狀辨識zh_TW
dc.subjectSubband;Prediction;Filtering;Shape recognitionen_US
dc.title次頻模式及其應用zh_TW
dc.titleSubband Modeling and Its Applicationsen_US
dc.typeThesisen_US
dc.contributor.department電信工程研究所zh_TW
Appears in Collections:Thesis