完整後設資料紀錄
DC 欄位語言
dc.contributor.author黃國楨en_US
dc.contributor.authorWhang, Guo-Jenen_US
dc.contributor.author林松山en_US
dc.contributor.authorLin, Song-Sunen_US
dc.date.accessioned2014-12-12T02:10:57Z-
dc.date.available2014-12-12T02:10:57Z-
dc.date.issued1992en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT810507002en_US
dc.identifier.urihttp://hdl.handle.net/11536/57102-
dc.description.abstract此篇學位論文中,我們考慮這個方程式的正半徑對稱解的存在性 .DELTA. u+g(.lgvert.x.lgvert.)f(u)=0在R<.lgvert.x.lgvert.<.Rbar. x.in.歐 幾里得N-空間 N.gtoreq.2有下列的邊界條件集合之一個:u=0在.lgvert. x.lgvert.=R,和u=0在.lgvert.x.lgvert.=.Rbar.,u=0在 .lgvert.x. lgvert.=R,和u對半徑之微分等於零,在.lgvert.x.lgvert.= .Rbar.,u 對半徑之微分等於零,在.lgvert.x.lgvert.=R,和u=0在 .lgvert.x. lgvert.=.Rbar.。此篇論文,是由參考文獻[1],[2],和[3]所引發的。 我們使用射擊法及估計,證明了解的存在性,得到以下的結果:在給定區 間[a,b],0<a<b<.inf.後,假設(A-1)',(A-2)',(A-3)'都成立,那麼我 們所要探討的方程式,都至少有一個正半徑對稱解。從內容中也可輕易看 出此篇也再次確証了一些已知的好結果。 In this thesis we consider the existence of the positive radial solutions of the equation.DELTA.u+g(.lgvert.x.lgvert.)f(u)=0 in R <.lgvert.x.lgvert.<.Rbar.x.in. Euclidean N-space,N.gtoreq.2, with one of following sets of boundary conditions: u=0 on .lgvert.x .lgvert.=R and u=0 on .lgvert.x.lgvert.=.Rbar., u=0 on .lgvert.x .lgvert.=R and the differentiation in the radial direction=0 on .lgvert.x.lgvert.=.Rbar., the differentiation in the radial dire- ction = 0 on .lgvert.x.lgvert.=R and u=0 on .lgvert.x.lgvert.= .Rbar.. This thesis was motivated by reference [1],[2],and[3]. We used shooting methods and estimation to prove the existence of t- he positive radial solutions, and got the following results: giv- en [a,b],0<a<b<. inf., assume(A-1)'(A-2)',and(A-3)'hold,then thses equations we consider have positeve radial solutions. It is easy to see that this thesis verifies some good results.zh_TW
dc.language.isoen_USen_US
dc.subject環;混合型;半線性;方程zh_TW
dc.subjectSemilinear;elliptic;equations;annular;mixeden_US
dc.title在環上混合型邊界條件的半線性方程zh_TW
dc.titleSemilinear elliptic equations on annular domain with mixed bound- ary conditionsen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文