完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Chun-Lingen_US
dc.contributor.authorTseng, Frank S. C.en_US
dc.contributor.authorLiang, Tyneen_US
dc.date.accessioned2014-12-08T15:07:19Z-
dc.date.available2014-12-08T15:07:19Z-
dc.date.issued2010-03-01en_US
dc.identifier.issn0306-4573en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.ipm.2009.09.009en_US
dc.identifier.urihttp://hdl.handle.net/11536/5765-
dc.description.abstractAs text documents are explosively increasing in the Internet, the process of hierarchical document clustering has been proven to be useful for grouping similar documents for versatile applications. However, most document clustering methods still suffer from challenges in dealing with the problems of high dimensionality, scalability, accuracy, and meaningful cluster labels. In this paper, we will present an effective Fuzzy Frequent Item-set-Based Hierarchical Clustering (F(2)IHC) approach, which uses fuzzy association rule mining algorithm to improve the clustering accuracy of Frequent Item-set-Based Hierarchical Clustering (FIHC) method, In our approach, the key terms will be extracted from the document set, and each document is pre-processed into the designated representation for the following mining process. Then, a fuzzy association rule mining algorithm for text is employed to discover a set of highly-related fuzzy frequent itemsets, which contain key terms to be regarded as the labels of the candidate clusters. Finally, these documents will be clustered into a hierarchical cluster tree by referring to these candidate clusters. We have conducted experiments to evaluate the performance based on Classic4, Hitech, ReO, Reuters, and Wap datasets. The experimental results show that our approach not only absolutely retains the merits of FIHC, but also improves the accuracy quality of FIHC. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectFuzzy association rule miningen_US
dc.subjectText miningen_US
dc.subjectHierarchical document clusteringen_US
dc.subjectFrequent itemsetsen_US
dc.titleMining fuzzy frequent itemsets for hierarchical document clusteringen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ipm.2009.09.009en_US
dc.identifier.journalINFORMATION PROCESSING & MANAGEMENTen_US
dc.citation.volume46en_US
dc.citation.issue2en_US
dc.citation.spage193en_US
dc.citation.epage211en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000275611200007-
dc.citation.woscount8-
顯示於類別:期刊論文


文件中的檔案:

  1. 000275611200007.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。