Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 王南景 | en_US |
dc.contributor.author | Nan-Ching Wang | en_US |
dc.contributor.author | 周志成 | en_US |
dc.contributor.author | Dr. Chi-Cheng Jou | en_US |
dc.date.accessioned | 2014-12-12T02:11:45Z | - |
dc.date.available | 2014-12-12T02:11:45Z | - |
dc.date.issued | 1993 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT820327020 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/57735 | - |
dc.description.abstract | 雖然目前類神經網路的研究多著重於靜態的前饋式網路上,但未來應用動 態網路於控制相關的問題將愈加重要。所謂的動態網路有二種可能情況: 一是具回饋連接的回歸式網路,另一是動態系統中包含前饋式網路。本論 文重點在探討動態網路的學習法則,稱為動態誤差反向傳遞學習法。主要 的研究內容有:(1) 回歸式與前饋式網路於控制相關應用方法的歸納與分 類;(2) 利用動態最佳化方法推導多種動態誤差反向傳遞學習法則;(3) 應用回歸式與前饋式網路於系統識別的方法和技術; (4) 應用回歸式與 前饋式網路於調節與追蹤的方法和技術;(5) 實證比比較回歸式與前饋式 網路應用於非線性動態系統的效果。 While much of the recent emphasis in the connectionist reseaarch has been on feedforward networks with static back- propagation, it is likely that the use of dynamic networks will be of particular importance in control-related applications. This thesis is focused on a learning methodology for recurrent networks with feedback connections and feedforward networks as subsystems in a dynamic system. Such a learning methodology is termed dynamic back-propagation, which is one of the most prominent learning methods for connectionist networks. A detailed study of dynamic back-propagation is presented to provide an insight of the principal ideas that contributed to the evolution of the concept and the details concerning its practical applications to identification and control. | zh_TW |
dc.language.iso | en_US | en_US |
dc.subject | 關鍵詞:類神經網路;最佳化;系統識別;控制 | zh_TW |
dc.subject | Neural network; optimization; plant identification; control | en_US |
dc.title | 動態誤差反向傳遞學習法應用於系統識別與控制 | zh_TW |
dc.title | Dynamic Back-Propagation for Plant Identification and Control | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 電控工程研究所 | zh_TW |
Appears in Collections: | Thesis |