Title: 類神經網路學習法與ARMAX模式整合技術應用於陀螺儀之識別
Identification of The TIMEX IG-10 Gyroscope Using ARMAX Model and Back-Propagation Learning Rule
Authors: 陳韋任
Wei-Ren Chen
林育平
Prof. Yu-Ping Lin
電控工程研究所
Keywords: 識別;陀螺儀;線性參數模誤式;誤差回饋演算法;identification; gyroscope; linear parametric model; back-propagation algorithm
Issue Date: 1993
Abstract: 本論文的目的是在於找出天美時積分陀螺儀的線性函數,其功能是在輸入
相同的情況下,函數之輸出值可以非常近似陀螺儀的輸出值,一般可以應
用在設計控制器的模擬上。本論文使用AR MAX-ANN方法來作系統識別,其
函數架構是AutoRegressive Movi ng Average with eXternal input模式
,函數的參數是使用類神經網路中的誤差回饋演算法得到。另外我們加入
兩種傳統系統識別方法來與新方法做比較,其中之一是AutoRegressive
with eX ternal input model estimator,在這種模式下我們使用最小平
方法得到其模式的參數。另一是Box-Jenkins model estimator,在此使
用來求得其模式參數值的方法是參數推算法。最後再由三種模式的輸出與
天美時積分陀螺儀的輸出做比較,判斷其五千筆資料(最大值:41.2003
deg/sec;最小值: -4 1.1372 deg/sec)之誤差狀況,得到ARMAX-ANN模
式之平均誤差為 3.3599 deg/sec, BJ模式為3.7644 deg/sec,ARX模式
為3.6993 deg/sec。
The objective of this paper is trying to search for the linear
parametric model of TIMEX IG-10 integrating gyroscope, whose
function is to approximate the measured output of gyroscope at
the same input. In this work, an ARMAX-ANN method is presented
which employ AutoRegressive Moving Average with eXternal input
(ARMAX) model and error back-propagation learning rule. Two
traditional methods of system identification, AutoRegressive
with eXternal input (ARX) model estimator and Box-Jenkins (BJ)
model estimator, has been used for comparing with the ARMAX-ANN
estimator. Finally, we computed the average errors of ARMAX-ANN
estimator and BJ estimator and ARX estimator at the same input,
pseudo- random binary signal. We have the results that the
average error of ARMAX-ANN estimator is 3.3599 deg/sec and that
of BJ estimator is 3.7644 deg/sec and that of ARX estimator is
3.6993 deg/sec.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT820327026
http://hdl.handle.net/11536/57741
Appears in Collections:Thesis