Title: 加強式學習於避碰運動控制之應用
Reinforcement Learning for Collision-Free Motion Control
Authors: 胡以能
Yii-Neng Hu
周志成
Dr. Chi-Cheng Jou
電控工程研究所
Keywords: 加強式學習;避碰;隨機性學習;reinforcement learning;collision-free;stochastic learning
Issue Date: 1993
Abstract: 本論文將加強式學習應用在避碰運動控制的問題上。加強式學習一般可分
為直接法和間接法兩大類。本論文所要探討的內容著重在比較這二種學習
方式的異同,此外,更要評定它們應用在機器人的避碰運動控制問題上的
成果及效率。雖然經由模擬我們發現利用直接法所設計出的控制器在一般
化的能力上要比間接法來得好,但是這二種學習方法都有各自的限制及缺
點,因此在目前很難評斷那一種學習方法較佳。然而在結構不甚明確的控
制問題上,加強式學習仍然是一種有效的解決方法。
This thesis applies reinforcement learning to the collision-
free motion control problem. There are two general
reinforcement learning methods, the direct and indirect method.
We present a direct method, the stochastic learning scheme, and
an indirect method, the model-based learning scheme. The focus
is on justify the effectiveness and efficiency of these schemes
on the robot collision-free motion control problem. The results
of simulations show that the stochastic learning scheme
outperforms the model-based learning scheme, but both learning
methods have their own limitations and disadvantages. It is
suggested that reinforcement learning control is an effective
alternative in dealing with less-structured control problems.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT820327029
http://hdl.handle.net/11536/57744
Appears in Collections:Thesis