完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 胡以能 | en_US |
dc.contributor.author | Yii-Neng Hu | en_US |
dc.contributor.author | 周志成 | en_US |
dc.contributor.author | Dr. Chi-Cheng Jou | en_US |
dc.date.accessioned | 2014-12-12T02:11:45Z | - |
dc.date.available | 2014-12-12T02:11:45Z | - |
dc.date.issued | 1993 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT820327029 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/57744 | - |
dc.description.abstract | 本論文將加強式學習應用在避碰運動控制的問題上。加強式學習一般可分 為直接法和間接法兩大類。本論文所要探討的內容著重在比較這二種學習 方式的異同,此外,更要評定它們應用在機器人的避碰運動控制問題上的 成果及效率。雖然經由模擬我們發現利用直接法所設計出的控制器在一般 化的能力上要比間接法來得好,但是這二種學習方法都有各自的限制及缺 點,因此在目前很難評斷那一種學習方法較佳。然而在結構不甚明確的控 制問題上,加強式學習仍然是一種有效的解決方法。 This thesis applies reinforcement learning to the collision- free motion control problem. There are two general reinforcement learning methods, the direct and indirect method. We present a direct method, the stochastic learning scheme, and an indirect method, the model-based learning scheme. The focus is on justify the effectiveness and efficiency of these schemes on the robot collision-free motion control problem. The results of simulations show that the stochastic learning scheme outperforms the model-based learning scheme, but both learning methods have their own limitations and disadvantages. It is suggested that reinforcement learning control is an effective alternative in dealing with less-structured control problems. | zh_TW |
dc.language.iso | en_US | en_US |
dc.subject | 加強式學習;避碰;隨機性學習 | zh_TW |
dc.subject | reinforcement learning;collision-free;stochastic learning | en_US |
dc.title | 加強式學習於避碰運動控制之應用 | zh_TW |
dc.title | Reinforcement Learning for Collision-Free Motion Control | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 電控工程研究所 | zh_TW |
顯示於類別: | 畢業論文 |