完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 許晊豪 | en_US |
dc.contributor.author | Chi-Haur Sheu | en_US |
dc.contributor.author | 楊谷洋 | en_US |
dc.contributor.author | Kuu-Young Young | en_US |
dc.date.accessioned | 2014-12-12T02:11:46Z | - |
dc.date.available | 2014-12-12T02:11:46Z | - |
dc.date.issued | 1993 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT820327030 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/57746 | - |
dc.description.abstract | 本文提出一種新的靜態運動路徑的規劃方法,以進一步提昇機器人的自動 化。我們所探討的重點在於依據任務需求而異的運動路徑規劃,這大有別 於傳統上所探討的路徑規劃問題。文章中所提出的策略其最基本的觀點是 向周圍區域擴張搜尋範圍,這種方法在分類上屬於局部性質的路徑規劃方 式(local method)。實際上我們是以擴張點(expanded node)的延伸來表 示搜索範圍向目標區逼近,這些擴張點只有在局部最小值阻礙了搜索方向 的時候才會產生。因此搜尋樹(search tree) 不會顯得很複雜而龐大。至 於擴張點的位置,我們利用遺傳演算法來決定。其中適存函數(fitness function) 安排了人類在搜索上的一些直覺與技巧 (heuristics)。如此 可以找到大約適當的擴張點用來作為逃離局部最小值的導引。本文以486 PC對於各種不同的任務需求分別做了模擬。此外在傳統的路徑規劃問題上 我們也展現了一些應用。最後在性能方面,文中所有的模擬在時間的花費 上依其困難度而言大都可以接受。 In order to enhance integration between CAD and robot, we proposed a novel and efficient scheme for planning kinematically feasible paths in the presence of obstacles. In this thesis, we focus on the task-dependent requirements instead of conventional initial-to-goal such as the classical mover's problems. This approach is local and primarily based on the expansion of search nodes. By exploring in selected directions in the C space, we create the expanded nodes sparingly, only when the constructed cost field takes the planner to a dead-end. So the search graph do not grow too large. Using a genetic algorithm with a simple heuristic fitness function, we find an adequate suboptimal expanded node that push the search from the blind valleys. We have simulated various tasks on a 486-PC. Applications on classical mover's problems are also investigated. All simulations take reasonable amount of time. | zh_TW |
dc.language.iso | en_US | en_US |
dc.subject | 依任務需求之路徑規劃;遺傳演算法則;人類直覺;擴張點 | zh_TW |
dc.subject | task-dependent path planning; genetic algorithm; heuristic; expanded node | en_US |
dc.title | 藉由遺傳演算法則將人類直覺應用於依任務需求之路徑規劃 | zh_TW |
dc.title | A heuristic approach to task-dependent path planning by using a genetic algorithm | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 電控工程研究所 | zh_TW |
顯示於類別: | 畢業論文 |