Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 林耀中 | en_US |
dc.contributor.author | Yaw-Chung Linn | en_US |
dc.contributor.author | 吳炳飛 | en_US |
dc.contributor.author | Bing-Fei Wu | en_US |
dc.date.accessioned | 2014-12-12T02:11:46Z | - |
dc.date.available | 2014-12-12T02:11:46Z | - |
dc.date.issued | 1993 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT820327039 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/57755 | - |
dc.description.abstract | 對於一般非線性估計問題,我們自互關訊息 (mutual entropy)發展一上 限 (upper bound) 於相關性係數 (correlation coefficient),此一上 限依據非線性轉換 (nonlinear transformation),而經由此轉換之後, 進而產生相互高斯 (jointly Gaussian) 訊號。我們也探討了最小均方估 計誤差 (minimum mean-squared estimation error) 和互關訊息的關係 。此外,當給定一相關性係數時,我們可以很容易地產生 ergodic 和相 互高斯訊號,所以可經由電腦來模擬。 For a general estimation problem, we develop an upper bound on the correlation coefficients in terms of the mutual entropy. This upper bound may be reached by means of a nonlinear trans- formation, after transformation, the processes are jointly Gaussian. The relationship between the minimum mean-squared error and the mutual entropy is discussed. Moreover, given a correl- ation coefficient, ergodic and jointly Gaussian signals can be generated easily, so that the simulation can be done by mputer. | zh_TW |
dc.language.iso | en_US | en_US |
dc.subject | 互關訊息;相關性係數;相互高斯;最小均方估計誤差 | zh_TW |
dc.subject | mutual entropy;correlation coefficient;jointly Gaussian;minimum mean-square estimation error | en_US |
dc.title | 互關訊息於非線性估計之探討 | zh_TW |
dc.title | Mutual Entropy to Nonlinear Estimation | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 電控工程研究所 | zh_TW |
Appears in Collections: | Thesis |