Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 陳永鎮 | en_US |
dc.contributor.author | Young-Jeng Chen | en_US |
dc.contributor.author | 鄧清政 | en_US |
dc.contributor.author | Ching-Cheng Teng | en_US |
dc.date.accessioned | 2014-12-12T02:11:49Z | - |
dc.date.available | 2014-12-12T02:11:49Z | - |
dc.date.issued | 1993 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT820327054 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/57772 | - |
dc.description.abstract | 近幾年來,模糊類神經網路已經廣泛的應用於模糊建模和模糊控制等領域 ,且都有極佳的結果,然而,在架構和計算的複雜度的考量上,仍有需要 做進一步的探討。基於此點,本論文著重於類神經網路模糊推論系統的研 究,針對模糊推論系統嚴謹的法則推理公式,我們提出兩個簡單的模糊類 神經網路, 分別簡稱為 FNN 和 NFNN ,藉由所提出的模糊類神經網路, 我們可以利用類神經網路的學習能力來求得模糊推論系統所需的模糊法則 。然而,像大多數的模糊系統一般,我們的模糊類神經網路不可避免的仍 有可能出現多餘的法則和語意輸入項 (linguistic term), 為了解決此 問題,針對我們所提出的兩個模糊類神經網路,我們分別介紹適當的方法 以達到簡化架構的目的。對於第一個模糊類神經網路 FNN , 我們藉由模 糊相似度的估測 (fuzzy similarity measure) ,用以組合相似的模糊 法則和語意輸入項,而同時去掉多餘的法則和語意輸入項。 對於第二 個模糊類神經網路 NFNN , 我們則提出一個法則組合程序 (rule combination procedure) 來找出可以組合的模糊法則, 而在模 糊法則組合的過程中,多餘的語意輸入項也一併被去掉。最後,我們以非 線性系統的模糊建模來展示我們所提出的模糊類神經網路架構和模糊法則 組合的方法,經由實驗模擬的結果, FNN 和 NFNN 均能有效的用於非線 性系統的模糊建模上,並且藉著模糊相似度的估測和法則組合程序, FNN 和 NFNN 的架構均能進一步的簡化。 In this thesis, we study the neural-network-based fuzzy inference systems. To realize the rule reasoning of fuzzy inference systems, two fuzzy neural networks, the FNN and NFNN, are presented in this thesis. The proposed fuzzy neural networks can acquire the fuzzy logical rules by employing the learning capability of neural networks. Moreover, for simplifying the structures of the proposed fuzzy neural networks, the redundant rules and linguistic terms should be removed from the FNN and the NFNN. With this problem, we utilize the fuzzy similarity measure in the FNN to combine the similar rules and linguistic terms. While for the NFNN, the fuzzy rules are reduced by means of a rule combination procedure. At last, the fuzzy modeling of nonlinear systems are applied to illustrate the proposed fuzzy neural networks. By means of the simulations, both the FNN and the NFNN can be successfully used on the fuzzy modeling of nonlinear systems. Moreover, the fuzzy similarity measure and the rule combination procedure are effective to reduce the structures of the FNN and the NFNN. | zh_TW |
dc.language.iso | en_US | en_US |
dc.subject | 模糊推論系統; 模糊相似度估測; 法則組合 | zh_TW |
dc.subject | fuzzy inference system;fuzzy similarity measure;rule combination | en_US |
dc.title | 類神經網路模糊推論系統及其在模糊建模的應用 | zh_TW |
dc.title | Neural-Network-Based Fuzzy Inference System and Its Application on Fuzzy Modeling | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 電控工程研究所 | zh_TW |
Appears in Collections: | Thesis |