Title: 量化迴授規格之高階系統轉換
High Order System Specification Transformation for QFT
Authors: 林保童
Bao-Tung Lin
林育平
Prof. Yu-Ping Lin
電控工程研究所
Keywords: 量化迴授設計理論;容忍度;規格;頻域領域;系統轉換函數;;QFT;Tolerance;Specification;Frequency-Domain;System Transfer Function;
Issue Date: 1993
Abstract: 量化迴授設計理論之設計,係基於頻域領域之觀念,而量化迴授設計理論
之第一步驟是將時域規格轉換為等效之頻域規格。本論文研究重點係在於
提出以三階全極點(3,0)模式,及三階含單零點(3,1)模式,時域規格轉換
為頻域規格之工作;QFT設計者有了頻域領域之容忍度(Tolerance)將更容
易設計穩健(Robust)控制器。三階模式,如選取極點在某一適當範圍之內
,比二階模式所做之轉換結果,其頻域響應之容忍度(Tolerance)更寬。
在三階含單零點(3,1)模式,如選取零點在負實軸很遠處,則其轉換結果
與三階全極點(3,0)模式相同,如選取實數極點在負實軸很遠處,則其轉
換結果與二階含單零點(2,1)模式相同,如選取實數極點與零點相等,則
與二階全極點(2,0)模式所做之轉換結果相同。
QFT design technique is based on frequency domain concepts. The
first step in QFT design is transfering time-domain tolerances
into equivalent frequency response tolerances. This thesis
focuses on translation of time-domain tolerances into frequency-
domain tolerances by third-order model with all poles (3,0)
system transfer function and third-order model with single zero
(3,1) system transfer function. In this paper we use two
examples to explain the translation of the two case above, the
QFT designer with frequency-domain tolerance will be easier to
design robust controllers. In third-order model, if we choose
the real poles within proper range, the result of frequency
response tolerance is wider than second-order model. In third-
order model with single zero (3,1) system if we choose the zero
far-off on negative real axis, the result is same as third-
order model with all poles (3,0) system,if we choose the real
pole far-off on negative real axis, the result is same as
second -order with zero (2,1) system, if we choose the real
pole equal to the zero, the result is same as second-order
model with all poles (2,0) system.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT820327069
http://hdl.handle.net/11536/57789
Appears in Collections:Thesis