標題: | 量化迴授規格之高階系統轉換 High Order System Specification Transformation for QFT |
作者: | 林保童 Bao-Tung Lin 林育平 Prof. Yu-Ping Lin 電控工程研究所 |
關鍵字: | 量化迴授設計理論;容忍度;規格;頻域領域;系統轉換函數;;QFT;Tolerance;Specification;Frequency-Domain;System Transfer Function; |
公開日期: | 1993 |
摘要: | 量化迴授設計理論之設計,係基於頻域領域之觀念,而量化迴授設計理論 之第一步驟是將時域規格轉換為等效之頻域規格。本論文研究重點係在於 提出以三階全極點(3,0)模式,及三階含單零點(3,1)模式,時域規格轉換 為頻域規格之工作;QFT設計者有了頻域領域之容忍度(Tolerance)將更容 易設計穩健(Robust)控制器。三階模式,如選取極點在某一適當範圍之內 ,比二階模式所做之轉換結果,其頻域響應之容忍度(Tolerance)更寬。 在三階含單零點(3,1)模式,如選取零點在負實軸很遠處,則其轉換結果 與三階全極點(3,0)模式相同,如選取實數極點在負實軸很遠處,則其轉 換結果與二階含單零點(2,1)模式相同,如選取實數極點與零點相等,則 與二階全極點(2,0)模式所做之轉換結果相同。 QFT design technique is based on frequency domain concepts. The first step in QFT design is transfering time-domain tolerances into equivalent frequency response tolerances. This thesis focuses on translation of time-domain tolerances into frequency- domain tolerances by third-order model with all poles (3,0) system transfer function and third-order model with single zero (3,1) system transfer function. In this paper we use two examples to explain the translation of the two case above, the QFT designer with frequency-domain tolerance will be easier to design robust controllers. In third-order model, if we choose the real poles within proper range, the result of frequency response tolerance is wider than second-order model. In third- order model with single zero (3,1) system if we choose the zero far-off on negative real axis, the result is same as third- order model with all poles (3,0) system,if we choose the real pole far-off on negative real axis, the result is same as second -order with zero (2,1) system, if we choose the real pole equal to the zero, the result is same as second-order model with all poles (2,0) system. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT820327069 http://hdl.handle.net/11536/57789 |
Appears in Collections: | Thesis |