完整後設資料紀錄
DC 欄位語言
dc.contributor.author林坤昌en_US
dc.contributor.authorKuen-Chang Linen_US
dc.contributor.author吳文榕en_US
dc.contributor.authorWen-Rong Wuen_US
dc.date.accessioned2014-12-12T02:12:20Z-
dc.date.available2014-12-12T02:12:20Z-
dc.date.issued1993en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT820436015en_US
dc.identifier.urihttp://hdl.handle.net/11536/58142-
dc.description.abstract在可加性白雜訊影響之下的弦波訊號估計是數位訊號處理中的重要問題之 一。本文中我們提出一種在低訊號雜訊比之下估計弦波訊號的技術;我們 的方法是把傳統的估計器應用於次頻頻域。對於區塊 (block) 的估計方 式, 我們選擇反覆濾波法 (iterative filtering algorithm) 做為頻 率估計器,而對於適應性 (adaptive) 的估計方式, 我們則使用預測誤 差濾波器 (prediction error filter) 來估計弦波訊號。此外,我們也 提出一種新的適應性最小均方差 ( LMS ) 法用以降低白雜訊的影響。電 腦模擬結果顯示在次頻中估計弦波訊號可以比在全頻中估計得到較好的效 果,而我們的新適應性濾波法也比傳統方法好很多。 Sinusoidal estimation in additive white noise is one of important problems in digital signal processing. In this thesis, techniques for estimating sinusoidal signals at low SNR are presented. Our approach is to apply conventional estimators in the subband domain. For block estimation, we choose the iterative filtering algorithm as the frequency estimator. For adaptive estimation, we use the prediction error filtering. Besides, we also propose a new type of adaptive LMS algorithm to reduce the influence of white noise. Simulation results show that sinusoidal estimation in the subband domain gives better performance than that in the full-band, and our new adaptive algorithm outperform the conventional ones.zh_TW
dc.language.isoen_USen_US
dc.subject弦波估計;頻率估計;次頻技術zh_TW
dc.subjectSinusoidal Estimation; Frequency Estimation; Subband Techniqueen_US
dc.title在低訊號雜訊比之下的弦波訊號估計zh_TW
dc.titleSinusoidal Signal Estimation at Low Signal-to-Noise Ratioen_US
dc.typeThesisen_US
dc.contributor.department電信工程研究所zh_TW
顯示於類別:畢業論文