完整後設資料紀錄
DC 欄位語言
dc.contributor.author蘇育新en_US
dc.contributor.authorYuh-Shin Suen_US
dc.contributor.author陳信宏en_US
dc.contributor.authorSin-Horng Chenen_US
dc.date.accessioned2014-12-12T02:12:21Z-
dc.date.available2014-12-12T02:12:21Z-
dc.date.issued1993en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT820436031en_US
dc.identifier.urihttp://hdl.handle.net/11536/58160-
dc.description.abstract在本論文中,我們主要研究一套可對中文文句做自動斷詞標詞類的語言模 型,及基本的音轉字語言模型。我們首先以統計法及幾種類神經網路法訓 練出不同的語言模型參數,並設計自動標詞類系統,以對各模型參數進行 評估;之後我們選擇統計法及較好的類神經網路法的模型參數,並結合幾 種簡單的構詞法則,完成自動斷詞標詞類系統。此外,我們也以這些模型 參數設計了初步的音轉字語言模型。在我們的實驗中,訓練語料庫 有1930 3個詞,測試語料庫有4836個詞。在外部測試(Outside Test)方面 ,以統計法所做的實驗可達97.1﹪的斷詞率及94.4﹪的詞類標示率,而在 類神經網路法方面,斷詞率為97.3﹪,詞類標示率則為94.2﹪。另外,音 轉字的正確率以統計法可達91.0﹪,而類神經網路法則為90.9﹪。 Two approaches of automatic segmentation and tagging for Chinese sentences are studied in this thesis. One is a statistical approach which uses an explicit bigram language model and the other is a neural net approach which uses MLP to predict POS's of words. Performance of these two methods was examined by simulations using a database with 19303 training words and 4836 testing words. Segmentation rates and tagging rates of 97.1% and 94.4% for the statistical method and of 97.3% and 94.2% for the neural net method were achieved. Extension of these two methods to the application of phoneme-to- text conversion is also studied using the same database. Character accuracy rates of 91.0% and 90.9% were respectively obtained by these two methods.zh_TW
dc.language.isozh_TWen_US
dc.subject斷詞; 詞類標示zh_TW
dc.subjectWord Segmentation; POS Taggingen_US
dc.title中文文句自動斷詞標詞類之研究與應用zh_TW
dc.titleA Study on Automatic Segmentation and Tagging of Chinese Sentenceen_US
dc.typeThesisen_US
dc.contributor.department電信工程研究所zh_TW
顯示於類別:畢業論文