Full metadata record
DC FieldValueLanguage
dc.contributor.author張國晏en_US
dc.contributor.authorKuo-Yen Changen_US
dc.contributor.author呂宗熙en_US
dc.contributor.authorTzong-Shi Liuen_US
dc.date.accessioned2014-12-12T02:12:34Z-
dc.date.available2014-12-12T02:12:34Z-
dc.date.issued1993en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT820489026en_US
dc.identifier.urihttp://hdl.handle.net/11536/58322-
dc.description.abstract磁撓致動器的運動原理係藉磁撓性合金在磁場作用之下,產生高頻的線性 運動。當一磁場方向與此磁撓性合金平行時,此合金材料會伸長。磁撓致 動器能展現高輸出力、快速反應時間和高頻作動能力,其應用範圍包括微 小定位、反振控制、機器人作業、閥門開關、高速幫浦、繼電器和高能量 音源。在本論文中運用此致動器所具有的線性反應和高頻輸出之能力,使 得原來不穩定的倒單擺機構達成倒立穩定。在模擬倒單擺穩定性中使用了 映射流理論、Mathieu 方程式和數值計算。本文藉由模擬和實驗結果,驗 證磁撓致動器的性能。 Magnetostrictive actuators are powered by a magnetostrictive alloy to achieve accurate linear or oscillatory motion in response to a magnetic field. The material will increase in length when a magnetic field is applied parallel to the drive axis and it will have identical response when the magnetic field is reversed. The actuators offer high force, microsecond response time, and high frequency motion. Applications include micropositioning, active antivibration, robotics, valve control, high force--high speed pumps, fast acting switches, relays, and high energy sonic sources. In this study, the linear response and high frequency displacement resulting from the actuator is utilized to change the original unstable state of an inverted pendulum to become stable. The mapping method, Mathieu equation, and numerical algorithm are carried out for analyzing the stability of the inverted pendulum. Simulation and experimental results demonstrate the actuator performance.zh_TW
dc.language.isoen_USen_US
dc.subject磁撓;致動器;倒單擺;馬修方程式;相流zh_TW
dc.subjectMagnetostrictive; Actuators; Inverted Pendulum; Mathieu Equation; Phase Flowen_US
dc.title磁撓致動器之研究zh_TW
dc.titleThe Study of Magnetostrictive Actuatorsen_US
dc.typeThesisen_US
dc.contributor.department機械工程學系zh_TW
Appears in Collections:Thesis