完整後設資料紀錄
DC 欄位語言
dc.contributor.author張勤振en_US
dc.contributor.authorChin-Chen Changen_US
dc.contributor.author陳秋媛en_US
dc.contributor.authorChiuyuan Chenen_US
dc.date.accessioned2014-12-12T02:12:43Z-
dc.date.available2014-12-12T02:12:43Z-
dc.date.issued1993en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT820507004en_US
dc.identifier.urihttp://hdl.handle.net/11536/58433-
dc.description.abstract一無向圖 G 是區間圖的充分必要條件是 : G 的 maximal cliques 能被 排成一個次序 ,使得對於 G 中的每一頂點 v 而言 ,包含 v 的 maximal cliques 是連續的 。在這篇論文中 ,我們將介紹一些相交圖 ,它們是區間圖的子集合 ,我們稱之為連續區間圖 。我們將証明 , 一 無向區間圖 G 是連續區間圖的充分必要條件是 : G 是連通圖而且不僅 G 的 maximal cliques 能被排成一個次序 ,使得對於 G 中的每一頂點 v 而言 ,包含 v 的 maximal cliques 是連續的 , 而且 G 的頂點也能 被排成一個次序 ,使得對於 G 中的每一 maximal clique A 而言 ,包 含於 A 中的頂點也是連續的 。連續區間圖有許多好的性質 ,而且可以 用來解決螺旋多邊形的警衛問題 。 An undirected graph G is an interval graph if and only if the maximal cliques of G can be linearly ordered such that, for every vertex v of G, the maximal cliques containing v occur consecutively. In this thesis, we shall introduce a class of intersection graphs, which is a subset of interval graphs; we call them consecutive interval graphs. We shall prove that an undirected graph G is consecutive interval graph if and only if G is connected and not only the maximal cliques of G can be linearly ordered such that, for every vertex v of G, the maximal cliques containing v occur consecutively but also the vertices of G can be linearly ordered such that, for every maximal clique A of G, the vertices contained in A occur consecutively. Consecutive interval graphs have many interesting properties and can be used to solve the guard problem in spiral polygons.zh_TW
dc.language.isoen_USen_US
dc.subject區間圖 、連續 1's 性質 、警衛問題 、可見性 、螺旋多邊形 。zh_TW
dc.subjectInterval graphs;the consecutive 1's property;guard ity;spiral polygon.en_US
dc.title連續區間圖與螺旋多邊形的警衛問題zh_TW
dc.titleConsecutive Interval Graphs and Guard Problem in Spiral Polygonen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文