完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 王太和 | en_US |
dc.contributor.author | Tai-Ho Wang | en_US |
dc.contributor.author | 許義容 | en_US |
dc.contributor.author | Yi-Jung Hsu | en_US |
dc.date.accessioned | 2014-12-12T02:12:43Z | - |
dc.date.available | 2014-12-12T02:12:43Z | - |
dc.date.issued | 1993 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT820507006 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/58436 | - |
dc.description.abstract | 本文旨在討論球面上凸區域之笛里西與諾伊曼特徵值之比較.我們導出以 下結果:如果球面上凸區域邊界的均區率非正,則每組相對應的特徵值,諾 伊曼將小於等於笛里西.而且,如果有一組特徵值諾伊曼等於笛里西,則此 邊界為球面上的一個極小曲面. Let M be a compact domain in the n-sphere with smooth boundary. Assume that the mean curvature h of the boundary of M is nonpositive. We prove that the k-th Neumann eigenvalue is less than or equal to the k-th Dirichlet eigenvalue of M. Moreover, these inequalites are strict unless the boundary of M is minimal. | zh_TW |
dc.language.iso | en_US | en_US |
dc.subject | 笛里西,諾伊曼,特徵值,N維球,均曲率. | zh_TW |
dc.subject | Dirichlet, Neumann, eigenvalue, n-sphere, mean curvature. | en_US |
dc.title | N維球上笛里西與諾伊曼特徵值之比較 | zh_TW |
dc.title | Inequalities between Dirichlet and Neumann Eigenvalues on Sphere | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
顯示於類別: | 畢業論文 |