完整後設資料紀錄
DC 欄位語言
dc.contributor.author王太和en_US
dc.contributor.authorTai-Ho Wangen_US
dc.contributor.author許義容en_US
dc.contributor.authorYi-Jung Hsuen_US
dc.date.accessioned2014-12-12T02:12:43Z-
dc.date.available2014-12-12T02:12:43Z-
dc.date.issued1993en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT820507006en_US
dc.identifier.urihttp://hdl.handle.net/11536/58436-
dc.description.abstract本文旨在討論球面上凸區域之笛里西與諾伊曼特徵值之比較.我們導出以 下結果:如果球面上凸區域邊界的均區率非正,則每組相對應的特徵值,諾 伊曼將小於等於笛里西.而且,如果有一組特徵值諾伊曼等於笛里西,則此 邊界為球面上的一個極小曲面. Let M be a compact domain in the n-sphere with smooth boundary. Assume that the mean curvature h of the boundary of M is nonpositive. We prove that the k-th Neumann eigenvalue is less than or equal to the k-th Dirichlet eigenvalue of M. Moreover, these inequalites are strict unless the boundary of M is minimal.zh_TW
dc.language.isoen_USen_US
dc.subject笛里西,諾伊曼,特徵值,N維球,均曲率.zh_TW
dc.subjectDirichlet, Neumann, eigenvalue, n-sphere, mean curvature.en_US
dc.titleN維球上笛里西與諾伊曼特徵值之比較zh_TW
dc.titleInequalities between Dirichlet and Neumann Eigenvalues on Sphereen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文