完整後設資料紀錄
DC 欄位語言
dc.contributor.author吳思慧en_US
dc.contributor.authorSsu-Hui Wuen_US
dc.contributor.author石至文en_US
dc.contributor.authorChih-Wen Shihen_US
dc.date.accessioned2014-12-12T02:12:44Z-
dc.date.available2014-12-12T02:12:44Z-
dc.date.issued1993en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT820507016en_US
dc.identifier.urihttp://hdl.handle.net/11536/58448-
dc.description.abstract我們證明一個對合酉矩陣的 類-Krein 定理.當一對合酉矩陣之特徵值有 重根且符合該準則時,即使些微擾動它仍究保持穩定.此外,我們也探究在 固定維度中,對合酉矩陣的譜穩定區域. Let P be an involution. An analog Krein theory for P-unitary matrices was derived. It provides a criterion for P-unitary matrices to remain stable when eigenvalues collide as the matrices vary. For a fixed dimension, the spectral stability region in terms of the coefficients of the characteristic polynomials of P-unitary matrices in the space of coefficients was investigated. Some low dimensional cases are demonstrated for illustration.zh_TW
dc.language.isoen_USen_US
dc.subject對合;酉矩陣;強穩定;譜穩定zh_TW
dc.subjectinvolution;unitary matrix;strongly stability; spectral stabilityen_US
dc.title對合酉矩陣之穩定性zh_TW
dc.titleStability of Involutively Unitary Matricesen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文