完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 吳思慧 | en_US |
dc.contributor.author | Ssu-Hui Wu | en_US |
dc.contributor.author | 石至文 | en_US |
dc.contributor.author | Chih-Wen Shih | en_US |
dc.date.accessioned | 2014-12-12T02:12:44Z | - |
dc.date.available | 2014-12-12T02:12:44Z | - |
dc.date.issued | 1993 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT820507016 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/58448 | - |
dc.description.abstract | 我們證明一個對合酉矩陣的 類-Krein 定理.當一對合酉矩陣之特徵值有 重根且符合該準則時,即使些微擾動它仍究保持穩定.此外,我們也探究在 固定維度中,對合酉矩陣的譜穩定區域. Let P be an involution. An analog Krein theory for P-unitary matrices was derived. It provides a criterion for P-unitary matrices to remain stable when eigenvalues collide as the matrices vary. For a fixed dimension, the spectral stability region in terms of the coefficients of the characteristic polynomials of P-unitary matrices in the space of coefficients was investigated. Some low dimensional cases are demonstrated for illustration. | zh_TW |
dc.language.iso | en_US | en_US |
dc.subject | 對合;酉矩陣;強穩定;譜穩定 | zh_TW |
dc.subject | involution;unitary matrix;strongly stability; spectral stability | en_US |
dc.title | 對合酉矩陣之穩定性 | zh_TW |
dc.title | Stability of Involutively Unitary Matrices | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
顯示於類別: | 畢業論文 |