Title: 雙分斯坦郝斯圖的計數
Counting Bipartite Steinhaus Graphs
Authors: 李岳勳
Yueh-Shin, Lee.
張鎮華
Gerard J. Chang
應用數學系所
Keywords: 雙分圖;斯坦郝斯圖;相連矩陣;;bipartite graphs; Steinhaus graphs; adjacency matrix;
Issue Date: 1993
Abstract: 斯坦郝斯矩陣為一對稱 $0-1$ 矩陣 $[a_{i,j}]_{n \times n}$,使得
當 $0 \leq i \leq n-1$ 時,$a_{i,i}=0$,且當 $1 \leq i < j \leq
n-1$ 時, $a_{i,j}=(a_{i-1,j-1}+a_{i-1,j}) \pmod 2$。以斯坦郝斯
矩陣為相連矩陣所成的圖,稱做斯坦郝斯圖。在這篇論文中,我們給雙分
斯坦郝斯圖一個新的特徵,利用這個特徵,可求得雙分斯坦郝斯圖的個數

A Steinhaus matrix is a symmetric $0-1$ matrix $[a_{i,j}]_{n
\times n}$ such that $a_{i,i}=0$ for $0 \leq i \leq n-1$ and
$a_{i,j}=(a_{i-1,j-1}+a_{i-1,j}) \pmod 2$ for $1 \leq i<j \leq
n-1$. A Steinhaus graph is a graph whose adjacency matrix is a
Steinhaus matrix. In this paper, we present a new
characterization of a graph to be a bipartite Steinhaus graph.
From this characterization, we derive a fomula for the number
$b(n)$ of bipartite Steinhaus graphs of order $n$.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT820507019
http://hdl.handle.net/11536/58451
Appears in Collections:Thesis