完整後設資料紀錄
DC 欄位語言
dc.contributor.author李岳勳en_US
dc.contributor.authorYueh-Shin, Lee.en_US
dc.contributor.author張鎮華en_US
dc.contributor.authorGerard J. Changen_US
dc.date.accessioned2014-12-12T02:12:44Z-
dc.date.available2014-12-12T02:12:44Z-
dc.date.issued1993en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT820507019en_US
dc.identifier.urihttp://hdl.handle.net/11536/58451-
dc.description.abstract斯坦郝斯矩陣為一對稱 $0-1$ 矩陣 $[a_{i,j}]_{n \times n}$,使得 當 $0 \leq i \leq n-1$ 時,$a_{i,i}=0$,且當 $1 \leq i < j \leq n-1$ 時, $a_{i,j}=(a_{i-1,j-1}+a_{i-1,j}) \pmod 2$。以斯坦郝斯 矩陣為相連矩陣所成的圖,稱做斯坦郝斯圖。在這篇論文中,我們給雙分 斯坦郝斯圖一個新的特徵,利用這個特徵,可求得雙分斯坦郝斯圖的個數 。 A Steinhaus matrix is a symmetric $0-1$ matrix $[a_{i,j}]_{n \times n}$ such that $a_{i,i}=0$ for $0 \leq i \leq n-1$ and $a_{i,j}=(a_{i-1,j-1}+a_{i-1,j}) \pmod 2$ for $1 \leq i<j \leq n-1$. A Steinhaus graph is a graph whose adjacency matrix is a Steinhaus matrix. In this paper, we present a new characterization of a graph to be a bipartite Steinhaus graph. From this characterization, we derive a fomula for the number $b(n)$ of bipartite Steinhaus graphs of order $n$.zh_TW
dc.language.isoen_USen_US
dc.subject雙分圖;斯坦郝斯圖;相連矩陣;zh_TW
dc.subjectbipartite graphs; Steinhaus graphs; adjacency matrix;en_US
dc.title雙分斯坦郝斯圖的計數zh_TW
dc.titleCounting Bipartite Steinhaus Graphsen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文