完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 李岳勳 | en_US |
dc.contributor.author | Yueh-Shin, Lee. | en_US |
dc.contributor.author | 張鎮華 | en_US |
dc.contributor.author | Gerard J. Chang | en_US |
dc.date.accessioned | 2014-12-12T02:12:44Z | - |
dc.date.available | 2014-12-12T02:12:44Z | - |
dc.date.issued | 1993 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT820507019 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/58451 | - |
dc.description.abstract | 斯坦郝斯矩陣為一對稱 $0-1$ 矩陣 $[a_{i,j}]_{n \times n}$,使得 當 $0 \leq i \leq n-1$ 時,$a_{i,i}=0$,且當 $1 \leq i < j \leq n-1$ 時, $a_{i,j}=(a_{i-1,j-1}+a_{i-1,j}) \pmod 2$。以斯坦郝斯 矩陣為相連矩陣所成的圖,稱做斯坦郝斯圖。在這篇論文中,我們給雙分 斯坦郝斯圖一個新的特徵,利用這個特徵,可求得雙分斯坦郝斯圖的個數 。 A Steinhaus matrix is a symmetric $0-1$ matrix $[a_{i,j}]_{n \times n}$ such that $a_{i,i}=0$ for $0 \leq i \leq n-1$ and $a_{i,j}=(a_{i-1,j-1}+a_{i-1,j}) \pmod 2$ for $1 \leq i<j \leq n-1$. A Steinhaus graph is a graph whose adjacency matrix is a Steinhaus matrix. In this paper, we present a new characterization of a graph to be a bipartite Steinhaus graph. From this characterization, we derive a fomula for the number $b(n)$ of bipartite Steinhaus graphs of order $n$. | zh_TW |
dc.language.iso | en_US | en_US |
dc.subject | 雙分圖;斯坦郝斯圖;相連矩陣; | zh_TW |
dc.subject | bipartite graphs; Steinhaus graphs; adjacency matrix; | en_US |
dc.title | 雙分斯坦郝斯圖的計數 | zh_TW |
dc.title | Counting Bipartite Steinhaus Graphs | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
顯示於類別: | 畢業論文 |