完整後設資料紀錄
DC 欄位語言
dc.contributor.author顏孟賢en_US
dc.contributor.authorYen, Meng-Hsienen_US
dc.contributor.author傅恆霖en_US
dc.contributor.authorFu, Hung-Linen_US
dc.date.accessioned2014-12-12T02:12:44Z-
dc.date.available2014-12-12T02:12:44Z-
dc.date.issued1993en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT820507023en_US
dc.identifier.urihttp://hdl.handle.net/11536/58455-
dc.description.abstract令$G$為一平面圖。我們稱$G$是圓盤維度為二的,如果$G$的所有的頂點可 嵌入在兩個稱為圓盤的互斥環路上,而且所有$G$的邊不是落在此二圓盤之 邊界上就是落在此二圓盤之外部且邊與邊之間沒有交叉。將$d$定義為三 角形間的最短距離,也就是說,連接不同三角形之頂點的所有最短路徑之長 度之最小值。在本篇論文之中我們首先在第二章中瀏覽一些以前與三色問 題有關的結果,然後在第三章中我們證明了所有圓盤維度為二且$d \geq 1$之平面圖皆是頂點三可著色的。 Let $G$ be a planar graph. $G$ is called "with $disk$ $dimension$ two" if all vertices of $G$ can be embedded on two disjoint cycles called $disks$, in which no edge lie in its interiors and make no crossing. Defined $d$ as the minimum distance of triangles, $i.e.$ the minimum length of shortest paths joining vertices of different triangles. In this thesis, we first study the 3-color problem in Chapter 2, and in Chapter 3 we show that if $G$ is a planar graph with disk dimension two and $d \geq 1$ then $G$ is 3-colorable.zh_TW
dc.language.isoen_USen_US
dc.subject平面圖, 點著色, 圓盤維度, 嵌入, 三角形間之距離, 三色問題zh_TW
dc.subjectplanar graphs, vertex coloring, disk dimension,embedding, distance of triangles, three color problemen_US
dc.title圓盤維度為二的平面圖其著色性質之研究zh_TW
dc.titleA STUDY OF THE THREE COLORABILITY OF PLANAR GRAPHS WITH DISK DIMENSION TWOen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文