Full metadata record
DC FieldValueLanguage
dc.contributor.author陳伯豪en_US
dc.contributor.authorPo-Hao Chenen_US
dc.contributor.author曾國雄en_US
dc.contributor.author劉宜欣en_US
dc.contributor.authorGwo-Hshiung Tzengen_US
dc.contributor.authorYi-Hsin Liuen_US
dc.date.accessioned2014-12-12T02:12:48Z-
dc.date.available2014-12-12T02:12:48Z-
dc.date.issued2003en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009135502en_US
dc.identifier.urihttp://hdl.handle.net/11536/58534-
dc.description.abstract本論文運用決策向量機器(SVM)來進行股價指數走向的預測。本文的主要目的在於驗證SVM預測股價指數走向的準確度,並設計一套有效的交易策略,並評估其獲利率。我們以台灣加權指數期貨作為實驗標的,資料由台灣期貨交易所取得。所取得的資料將之轉換成數日之相對變動百分比來表示指數走向的樣式。結果顯示用SVM的交易策略優於買進持有策略。zh_TW
dc.description.abstractThis thesis deals with the application of a novel neural network technique, Support Vector Machine (SVM), in stock indices movement prediction. The purpose of this thesis is to demonstrate and verify the predictability of stock index direction using SVM, to develop effective trading strategies and to test the relative performance. A real future contract (Taiwan Stock Exchange Capitalization Weighted Stock Index) collected from Taiwan Futures Exchange is used as the data set. The series of relative difference in percentage of price (RDP) is adopted as the input variables to describe the patters of market movement. Results indicate that the technique is capable of returning results that are superior to those attained by buy-and-hold strategy.en_US
dc.language.isoen_USen_US
dc.subject決策向量機器zh_TW
dc.subject預測zh_TW
dc.subject股價指數zh_TW
dc.subject類神經網路zh_TW
dc.subjectSupport vector machinesen_US
dc.subjectForecastingen_US
dc.subjectStock indexen_US
dc.subjectNeural networken_US
dc.title運用數學模式來對股價指數作預測zh_TW
dc.titleStock Indices Forecasting Using a Support Vector Machineen_US
dc.typeThesisen_US
dc.contributor.department科技管理研究所zh_TW
Appears in Collections:Thesis