完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 劉育津 | en_US |
dc.contributor.author | Liu, Yu-Chin | en_US |
dc.contributor.author | 黎漢林 | en_US |
dc.contributor.author | Li, Han-Lin | en_US |
dc.date.accessioned | 2014-12-12T02:12:55Z | - |
dc.date.available | 2014-12-12T02:12:55Z | - |
dc.date.issued | 1993 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT823396018 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/58618 | - |
dc.description.abstract | 隨著專家系統的需求日益增加,如何使機器學習儼然成為一項重要的課題,目前有許多研究成功的提出學習的演算法,其中J. R. Quinlan提出的ID3演算法來產生決策樹十分著名。但此法在語意的表達上有先天上的限制,另一方面亦無法處理含有雜訊的資料。 本篇論文提出一個藉由0-1整數規劃產生決策樹的新方法(命名為C-MAX演算法),此法並可進一步導出只含一層的決策樹,同時它亦能提供一個處理雜訊資料的方法。最後本篇論文將ID3與C-MAX演算法針對決策樹的大小及所產出規劃的正確率和普及率做一比較,我們將可發現C-MAX可以獲得較佳的決策樹。 | zh_TW |
dc.description.abstract | The algorithms for building knowledge-based systems by inductive inference from example have been demonstrated successfully in several researches. The ID3 algorithm is a well-known approach (proposed by J.R. Quinlan) to synthesizing decision trees that has been used in a variety of systems. But it lacks of powerful expression and ignores the uncertain data. This thesis proposes a new algorithm (named C-MAX algorithm) to establish decision trees by using 0-1 integer programming, and it can be further utilized to construct one-level trees. Meanwhile, the treatment for uncertain data is also considered in this new algorithm. Finally, this thesis provides the comparison between ID3 and C-MAX algorithm to show the size of decision trees can be much reduced as well as the accuracy and coverage rate can be upgraded. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 機器學習 | zh_TW |
dc.subject | 例舉式學習 | zh_TW |
dc.subject | 決策樹 | zh_TW |
dc.subject | ID3演算法 | zh_TW |
dc.subject | C-MAX演算法 | zh_TW |
dc.subject | 整數規劃 | zh_TW |
dc.subject | machine learning | en_US |
dc.subject | learning form examples | en_US |
dc.subject | decision tree | en_US |
dc.subject | ID3 algorithm | en_US |
dc.subject | C-MAXalgorithm | en_US |
dc.subject | integer programming | en_US |
dc.title | 人工智慧中決策樹的最佳推導方法 | zh_TW |
dc.title | Optimal Deduction Of Decision Trees For Machine Learning In Artificial Intelligence | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 資訊管理研究所 | zh_TW |
顯示於類別: | 畢業論文 |