完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Wen-Chihen_US
dc.contributor.authorJohnson, Andrew L.en_US
dc.date.accessioned2014-12-08T15:07:28Z-
dc.date.available2014-12-08T15:07:28Z-
dc.date.issued2010-02-01en_US
dc.identifier.issn0305-0548en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.cor.2009.06.010en_US
dc.identifier.urihttp://hdl.handle.net/11536/5891-
dc.description.abstractData envelopment analysis(DEA) uses extreme observations to identify superior performance, making it vulnerable to outliers. This paper develops a unified model to identify both efficient and inefficient outliers in DEA. Finding both types is important since many post analyses, after measuring efficiency, depend on the entire distribution of efficiency estimates. Thus, outliers that are distinguished by poor performance can significantly alter the results. Besides allowing the identification of outliers, the method described is consistent with a relaxed set of DEA axioms. Several examples demonstrate the need for identifying both efficient and inefficient outliers and the effectiveness of the proposed method. Applications of the model reveal that observations with low efficiency estimates are not necessarily outliers. In addition, a strategy to accelerate the computation is proposed that can apply to influential observation detection. (C) 2009 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectData envelopment analysisen_US
dc.subjectOutlieren_US
dc.subjectPost analysisen_US
dc.titleA unified model for detecting efficient and inefficient outliers in data envelopment analysisen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cor.2009.06.010en_US
dc.identifier.journalCOMPUTERS & OPERATIONS RESEARCHen_US
dc.citation.volume37en_US
dc.citation.issue2en_US
dc.citation.spage417en_US
dc.citation.epage425en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000273416100020-
dc.citation.woscount7-
顯示於類別:期刊論文


文件中的檔案:

  1. 000273416100020.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。