Title: 模糊類神經網路於震測圖形識別之研究
The Study of Fuzzy Neural Network For Seismic Pattern Recognition
Authors: 袁永偉
Yune-Wei Yuan
黃國源
Kou-Yuan Huang
資訊科學與工程研究所
Keywords: 類神經網路;震測圖形識別;Neural Network;Seismic Pattern Recognition
Issue Date: 1994
Abstract: 我們提出三個模糊類神經網路模型,模糊K個最近鄰點法則網路 (Fuzzy
K-NNR net),二階段模糊類神經網路 (Two Learning Steps Fuzzy
Neural Network),及 Fuzzy Functional-Link 網路。我們將此三個模糊
類神經網路應用在 Seismic Trace Editing 和 Seismic First Arrival
Picking 的問題上。第一個模糊類神經網路是模糊K個最近鄰點法則網路
。模糊K個最近鄰點法則網路由 Hamming net 發展而來的。在訓練網路
的階段,每一 pattern 都依據其所屬的類別而設定 fuzzy membership。
在測試的階段,測試的 pattern 通過神經網路而決定這個 pattern 是屬
於何種類別。第二個模糊類神經網路為採用模糊 C-means 理論的二階段
模糊類神經網路。這種網路的訓練過程可分為二個階段。第一個階段採用
模糊 C-means 理論是一種非監督式學習的方法而第二個學習段採用
perceptron learning 是一種監督式學習的方法。在在測試的階段,測試
的 pattern 被放進這個網路,然後轉換成 C 個 fuzzy degrees,輸出層
根據這 C 個 fuzzy degrees 得到最後的輸出。第三個模糊類神經網路
是 Fuzzy functional-link net,在學習的過程中加入了模糊的概念。這
三個模糊類神經網路都應用在震測的 Trace editing 和 First arrival
picking 的問題上。所有的實驗都能獲得相當好的結果。
We propose three fuzzy neural network models, fuzzy K-nearest
neighbor rule (fuzzy K-NNR) net, two learning steps fuzzy
neural network, and fuzzy functional-link net. The three
fuzzy neural networks are all applied to two important seismic
pattern recognition problems, seismic trace editing and seismic
first arrival picking. The first fuzzy neural network model is
fuzzy K-neighbor rule neural network. Fuzzy K-nearest neighbor
classification rule is implemented by neural network of the
Hamming net. In the training stage of fuzzy K-nearest neighbor
classification rule neural network, each pattern is assigned
fuzzy membership. In the testing stage, testing patterns are
through the neural network to determine which class the testing
pattern belongs to. By adopting fuzzy C-means theorem the
second fuzzy neural network model is two steps learning fuzzy
neural network. The training stage of this neural network
model are divided into two learning steps. The first step is
applying unsupervised learning method using fuzzy C-means
theorem as learning algorithm and second learning step is
perceptron learning by gradient-descent method which is a
supervised learning method. In the testing stage, each testing
pattern is put in this network and transfer the pattern to C
fuzzy degrees, output layer then get the output according to
the C fuzzy degrees. Fuzzy functional-link net is 3rd fuzzy
neural network model incorporated with fuzzy concept in
learning procedure. The three fuzzy neural network are applied
to seismic trace editing and first arrival picking. The
experiments of seismic trace editing and seismic first arrival
picking are quite encouraging.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT830394005
http://hdl.handle.net/11536/59023
Appears in Collections:Thesis