Title: 不同氧化層厚度次微米 LDD MOS 元件中熱載子導致元件的退化分析
Analysis on Gate-Oxide Thickness Dependence of Hot-Carrier- Induced Degradation in Submicrometer LDD nMOSFET's
Authors: 吳俊沛
Jiunn-Pey Wu
莊紹勳
Steve Shao-Shiun Chung
電子研究所
Keywords: 與氧化層厚度相關; 熱載子導致的特性退化.;oxide thickness dependence; hot-carrier-induced degradation;
Issue Date: 1994
Abstract: 本論文著重於研究熱載子對不同氧化層厚度之 LDD N 型金氧半場效電晶
體 (LDD nMOSFET)所造成的特性退化。研究顯示,在相同的操作偏壓下,
氧化層較薄的 LDD nMOSFET有較大的特性退化。然而,根據以往的報告,
氧化層較薄的傳統金氧半場效電晶體 (conventional MOSFET)卻有較小的
特性退化。既然 LDD 元件的主要退化機制與傳統元件不同,導因於
LDD nMOSFET's 有 spacer-induced degradation ,我們發展出一套改良
的汲極電流特性退化模型以研究在 LDD nMOSFET's中的特性退化機制。研
究發現,移動率退化不是 LDD nMOSFET's的主要退化機制。一個新的退化
機制將被引入以解釋在 n- 區域中因界面狀態 (interface state)的產生
而增加之電阻。再者,因 LDD元件的等效通道長度 (effective channel
length) 和源–汲極串聯電阻 (source-drain series resistance) 與閘
極電壓有關,我們使用 paired Vg method 來萃取出隨閘極電壓而變的等
效通道長度與源–汲極串聯電阻。結果顯示這個一般化的 MOSFET 汲極電
流特性退化模型可以獲得一與實驗結果相近的值。根據此一模型,吾人可
以明確的瞭解隨氧化層厚度不同而產生的退化特性的差異。
In this thesis, gate-oxide thickness dependecnce of hot-
carrier-induced degradation is investigated for LDD nMOSFET'
s. It is shown that a thinner gate oxide LDD nMOSFET's
causes larger drain current degradation under the same
bias stress condition. However, it has been reported that a
thinner gate oxide conventional nMOSFET shows smaller
degradation. Since the dominant degradation mechanism for the
LDD device differ from the conventional device, due to the
spacer-induced degradation, an improved drain linear-current
degradation model is developed in order to investigate the
degradation mechanism in LDD MOSFET. A new degradation
mechanism is introduced to account for the increasing of
resistance in the n- region due to the generation of
interface states. Further, since the effective channel
length and the source-drain series resistance of an LDD
device are gate-voltage dependent, the paired Vg method is
used to extract the effective channel length and the series
resistance. It can be found that this generalized drain
current degradation model gives a good agreement to the
measured data for different gate oxide thickness. Based on
this model, the gate-oxide thickness dependence of
degradation can be well analyzed.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT830430104
http://hdl.handle.net/11536/59297
Appears in Collections:Thesis