Full metadata record
DC FieldValueLanguage
dc.contributor.author羅思善en_US
dc.contributor.authorSy-Shann Luoen_US
dc.contributor.author吳文榕en_US
dc.contributor.authorWen-Rong Wuen_US
dc.date.accessioned2014-12-12T02:13:56Z-
dc.date.available2014-12-12T02:13:56Z-
dc.date.issued1994en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT830436039en_US
dc.identifier.urihttp://hdl.handle.net/11536/59395-
dc.description.abstract這篇論文是說明如何利用方向性次頻分解做出不受大小比例影響的紋理影
像辨認.這種次頻分解是用一種濾波器將頻譜作方向性的切割,因此其輸出
可提供方向性的訊息.從經過次頻分解的紋理影像中,我們推導出兩種不受
比例影響的影像特徵,一為正規化功率,一為正規化相關性,在辨認時,將未
知的影像特徵取出,與事先建立好的資料庫比較,選取最接近的作為辨認結
果.經實驗證實,利用我們的方法,辨識率可達 98%.
These thesis proposes a scale-invariant texture classification
scheme by using directional subband decomposition. The decompo-
sition is characterized by a bank of directional subband
filters that allow a two-dimensional input signal to be
represented by a sum of maximally decimated subband images and
perfectly recon- structed from these decimated ones. In each
decomposed channel image, we derive scale-invariant features
which correspond to the normalized power and the normalized
correlations. Training images are used to find feature
templates. During classification , the unknown texture is
matched against all the templates and the best match is taken
as the classification result. From simu- lations, we find that
the highest classification rate using 16 band decomposition for
16 kinds of texture is 98%.
zh_TW
dc.language.isoen_USen_US
dc.subject紋理影像;次頻分解;影像辨認zh_TW
dc.subjectTextures;Subband Decomposition;Texture Classificationen_US
dc.title利用方向性次頻分解之不受大小比例影響的紋理影像辨認zh_TW
dc.titleScale-Invariant Texture Classification Using Directional Subband Decompositionen_US
dc.typeThesisen_US
dc.contributor.department電信工程研究所zh_TW
Appears in Collections:Thesis