Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yen, Chih-Hung | en_US |
dc.contributor.author | Fu, Hung-Lin | en_US |
dc.date.accessioned | 2014-12-08T15:07:33Z | - |
dc.date.available | 2014-12-08T15:07:33Z | - |
dc.date.issued | 2010-02-01 | en_US |
dc.identifier.issn | 1027-5487 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/5945 | - |
dc.description.abstract | A linear k-forest is a graph whose components are paths with lengths at most k. The minimum number of linear k-forests needed to decompose a graph G is the linear k-arboricity of G and denoted by la(k) (G). In this paper, we settle the cases left in determining the linear 2-arboricity of the complete graph K(n). Mainly, we prove that la(2) (K(12t+10)) = la(2) (K(12t+11)) = 9t + 8 for any t >= 0. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Linear k-forest | en_US |
dc.subject | Linear k-arboricity | en_US |
dc.subject | Complete graph | en_US |
dc.title | LINEAR 2-ARBORICITY OF THE COMPLETE GRAPH | en_US |
dc.type | Article | en_US |
dc.identifier.journal | TAIWANESE JOURNAL OF MATHEMATICS | en_US |
dc.citation.volume | 14 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 273 | en_US |
dc.citation.epage | 286 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000274217800018 | - |
dc.citation.woscount | 2 | - |
Appears in Collections: | Articles |