Full metadata record
DC FieldValueLanguage
dc.contributor.authorYen, Chih-Hungen_US
dc.contributor.authorFu, Hung-Linen_US
dc.date.accessioned2014-12-08T15:07:33Z-
dc.date.available2014-12-08T15:07:33Z-
dc.date.issued2010-02-01en_US
dc.identifier.issn1027-5487en_US
dc.identifier.urihttp://hdl.handle.net/11536/5945-
dc.description.abstractA linear k-forest is a graph whose components are paths with lengths at most k. The minimum number of linear k-forests needed to decompose a graph G is the linear k-arboricity of G and denoted by la(k) (G). In this paper, we settle the cases left in determining the linear 2-arboricity of the complete graph K(n). Mainly, we prove that la(2) (K(12t+10)) = la(2) (K(12t+11)) = 9t + 8 for any t >= 0.en_US
dc.language.isoen_USen_US
dc.subjectLinear k-foresten_US
dc.subjectLinear k-arboricityen_US
dc.subjectComplete graphen_US
dc.titleLINEAR 2-ARBORICITY OF THE COMPLETE GRAPHen_US
dc.typeArticleen_US
dc.identifier.journalTAIWANESE JOURNAL OF MATHEMATICSen_US
dc.citation.volume14en_US
dc.citation.issue1en_US
dc.citation.spage273en_US
dc.citation.epage286en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000274217800018-
dc.citation.woscount2-
Appears in Collections:Articles