Full metadata record
DC FieldValueLanguage
dc.contributor.author劉昭蓉en_US
dc.contributor.authorLiu,Chao Rongen_US
dc.contributor.author黃大原en_US
dc.contributor.authorTayuan Huangen_US
dc.date.accessioned2014-12-12T02:14:10Z-
dc.date.available2014-12-12T02:14:10Z-
dc.date.issued1994en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT830507016en_US
dc.identifier.urihttp://hdl.handle.net/11536/59646-
dc.description.abstract假設 G 是一個連接且k 正則圖型,其值譜和參數為 a_1=a_2=...=a_{d-1 }=0 但 a_d>0 的距離正則圖型.GAMMA.(也就是一個廣義奇圖)相同. 藉著 霍夫曼多項式(Hoffman Polynomial), 我們證明 G 必是距離正則圖型而 且和.GAMMA.有相同的相交陣列 (intersection array). 再者,如果. GAMMA.是下列圖型之一: the odd polygons, the odd graphs, the folded (2d+1)cube, the coset graph of binary Golay code, the Hoffman Singletion graph, the Gewirtz graph, the Higman Sims graph, the second constituent of the Higman Sims graph, 或 complement of the Clebsch graph, 則 G 和 .GAMMA. 同構. Suppose that G is connected, k-regular graph such that Spec(G)= Spec(.GAMMA.) where .GAMMA. is a distance regular graph with parameters a_1=a_2= ... =a_{d-1}=0 and a_d>0; i.e., a generalized odd graph, we show that G must be distance regular with the same intersection array as that of .GAMMA. in terms of the notion of Hoffman polynomials.zh_TW
dc.language.isoen_USen_US
dc.subject廣義奇圖;值譜刻劃;霍夫曼多項式zh_TW
dc.subjectGeneralized Odd graph;spectral characterization; Hoffman polynomialen_US
dc.title廣義奇圖的值譜刻劃zh_TW
dc.titleSpectral Characterizations of Generalized Odd Graphsen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis