Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 劉昭蓉 | en_US |
dc.contributor.author | Liu,Chao Rong | en_US |
dc.contributor.author | 黃大原 | en_US |
dc.contributor.author | Tayuan Huang | en_US |
dc.date.accessioned | 2014-12-12T02:14:10Z | - |
dc.date.available | 2014-12-12T02:14:10Z | - |
dc.date.issued | 1994 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT830507016 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/59646 | - |
dc.description.abstract | 假設 G 是一個連接且k 正則圖型,其值譜和參數為 a_1=a_2=...=a_{d-1 }=0 但 a_d>0 的距離正則圖型.GAMMA.(也就是一個廣義奇圖)相同. 藉著 霍夫曼多項式(Hoffman Polynomial), 我們證明 G 必是距離正則圖型而 且和.GAMMA.有相同的相交陣列 (intersection array). 再者,如果. GAMMA.是下列圖型之一: the odd polygons, the odd graphs, the folded (2d+1)cube, the coset graph of binary Golay code, the Hoffman Singletion graph, the Gewirtz graph, the Higman Sims graph, the second constituent of the Higman Sims graph, 或 complement of the Clebsch graph, 則 G 和 .GAMMA. 同構. Suppose that G is connected, k-regular graph such that Spec(G)= Spec(.GAMMA.) where .GAMMA. is a distance regular graph with parameters a_1=a_2= ... =a_{d-1}=0 and a_d>0; i.e., a generalized odd graph, we show that G must be distance regular with the same intersection array as that of .GAMMA. in terms of the notion of Hoffman polynomials. | zh_TW |
dc.language.iso | en_US | en_US |
dc.subject | 廣義奇圖;值譜刻劃;霍夫曼多項式 | zh_TW |
dc.subject | Generalized Odd graph;spectral characterization; Hoffman polynomial | en_US |
dc.title | 廣義奇圖的值譜刻劃 | zh_TW |
dc.title | Spectral Characterizations of Generalized Odd Graphs | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
Appears in Collections: | Thesis |