完整後設資料紀錄
DC 欄位語言
dc.contributor.author鄭益川en_US
dc.contributor.authorZheng, Yi-Chuanen_US
dc.contributor.author周幼珍en_US
dc.contributor.authorZhou, You-Zhenen_US
dc.date.accessioned2014-12-12T02:14:27Z-
dc.date.available2014-12-12T02:14:27Z-
dc.date.issued1994en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT834337008en_US
dc.identifier.urihttp://hdl.handle.net/11536/59895-
dc.description.abstractH探討缺失值問題在分類上的應用為主要目的。從參考過的文獻中, 禰◥滌眾]下,我們討論幾種缺失值處理法,包括(1)完整觀察值法、 值插補法、(3)迴歸法,以及(4)多重插補法,當運用在分類問題時, □膆Ⅲ~率。此外,也探討當資料的缺失具單調型態時,不經插補進 A其理論錯分機率,並與上述四種方法處理結果比較。過程以電腦模 C thesis, we investigate on the topic of classification with values. After a review of the literature on missing values, uss, under the assumption that all missing values are missing om(MAR), various ways of handling missing values, including lete observed vector method, (2)mean substitution method, ession method, and (4)multiple imputation method. We compare arent error rate(AER) resulting from the above four methods plied to classification. , suppose that the data with missing values can be arranged notone pattern, we investigate the theoretical probability of sification without imputing the missing values, and compare ult to that of using the above four methods. investigations are done by computer simulation.zh_TW
dc.language.isozh_TWen_US
dc.subject缺失值zh_TW
dc.subject問題zh_TW
dc.subject分類應用zh_TW
dc.subject統計zh_TW
dc.subjectSTATISTICSen_US
dc.title缺失值問題在分類上的應用zh_TW
dc.titleCLASSIFICATION WITH MISSING VALUSESen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
顯示於類別:畢業論文