完整後設資料紀錄
DC 欄位語言
dc.contributor.author許靜華en_US
dc.contributor.authorXu, Jing-Huaen_US
dc.contributor.author馮潤華en_US
dc.contributor.authorPing, Run-Huaen_US
dc.date.accessioned2014-12-12T02:14:29Z-
dc.date.available2014-12-12T02:14:29Z-
dc.date.issued1994en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT834507001en_US
dc.identifier.urihttp://hdl.handle.net/11536/59939-
dc.description.abstract本文的目的在於利用秩表現QR分解法求 rank deficient 遞迴最小平方法 的問題.我們利用秩表現QR分解, 奇異值的插入定理, 以及兩種奇異值逼 近法 ACE 和 ICE 發展出一套新的演算法來解 rank deficient 遞迴最小 平方法的問題. Finding the numerical rank of a matrix is one of the moste problems in numerical linear algebra. The rankctorization (RRQR) can sometimes be used as a reliable and efficient computational alternative to the singular value decomposition (SVD) for problems that involve rank determination. In this thesis, we consider solving theeficient recursive least squares (RLS) problems with RRQR factorization. A new procedure is developed to generalize the full rank RLS problem to rank deficient cases. Our result ison the RRQR factorization proposed by Chan, the singularterlacing theorem and two dynamic condition estimators, algorithm by Bischof.zh_TW
dc.language.isoen_USen_US
dc.subject非滿秩zh_TW
dc.subject修正後秩表現QR分zh_TW
dc.subject最小平方法zh_TW
dc.subject應用數學zh_TW
dc.subject數學zh_TW
dc.subject修正後秩表現QR分解zh_TW
dc.subject遞迴最小平方法zh_TW
dc.subject快速適應性條件數估計zh_TW
dc.subject增量條件數估計zh_TW
dc.subjectRuenn-HWen_US
dc.subjectFerngen_US
dc.subjectAPPLIED-MATHEMATICSen_US
dc.subjectMATHEMATICSen_US
dc.subjectRuenn-HwaFerngen_US
dc.subjectrank deficienten_US
dc.subjectRRQRen_US
dc.subjectLSen_US
dc.subjectRLSen_US
dc.subjectACEen_US
dc.subjectICEen_US
dc.title修正後秩表現QR分解在遞迴最小平方法上的計算zh_TW
dc.titleRank revealing QR factorization in recursive least squares computationszengen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文