Full metadata record
DC FieldValueLanguage
dc.contributor.author洪維遠en_US
dc.contributor.authorHung, Wei-Yuanen_US
dc.contributor.author林昇甫en_US
dc.contributor.authorSheng-Fuu Linen_US
dc.date.accessioned2014-12-12T02:14:59Z-
dc.date.available2014-12-12T02:14:59Z-
dc.date.issued1995en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT840327015en_US
dc.identifier.urihttp://hdl.handle.net/11536/60270-
dc.description.abstract我們提出一種利用電腦視覺 (Computer Vision) 來辨識動態手勢的方法.
在我們的系統中, 使用攝影機 (CCD) 來抓取手部影像,利用手掌及手指的
幾何形狀和特 性作特徵抽取,得到手指端點的位置,利用運動調和法
(Motion Correspondence), 得到運動軌跡再造出向量,再使用類神
經網路中的 supervised fuzzy adaptive Hamming net (SFAHN)來學習和
辨識.針對十六種手勢作測試,結果顯示辨識率相當高; 其中
包括了運動起始點和終點相同,僅運動軌跡不同的相似手勢,
以及手指會發生部份遮蔽 (occlusion) 的手勢.
We propose a method for using Computer Vision to recognize
dynamic gestures. In our system, we use a charge-coupled device
(CCD) camera to capture hand images, we then find the
positions of fingertips using the geometrical shapes and
characteristics of the human hand, taking advantage of
``Motion Correspondence'' to find the motion trajectories, and
calculate vectors from start to stop positions of motion
trajectories. We interpret the vectors using a supervised fuzzy
adaptive Hamming net (SFAHN). Simulation results show the
proposed method has a recognition rate approaching 100% for two
pairs of patterns with different motion trajectories but the
same start and stop positions, even when fingertips in some
gesture patterns were partially occluded.
zh_TW
dc.language.isozh_TWen_US
dc.subject電腦視覺zh_TW
dc.subject動態手勢zh_TW
dc.subject軌跡追蹤zh_TW
dc.subject神經網路zh_TW
dc.subject部份遮蔽zh_TW
dc.subjectcomputer visionen_US
dc.subjectdynamic gestureen_US
dc.subjecttrajectory trackingen_US
dc.subjectneural networken_US
dc.subjectpartial occlusionen_US
dc.title運動中發生部分遮蔽之動態手勢辨識zh_TW
dc.titleAn Approach to Dynamic Gesture Recognition under Partial Occlusion in Motionen_US
dc.typeThesisen_US
dc.contributor.department電控工程研究所zh_TW
Appears in Collections:Thesis